Browsing by Author "Liu, Lixuan"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- MMV008138 and analogs: potential novel antimalarial agents for P. falciparumLiu, Lixuan (Virginia Tech, 2018-05-15)Malaria is a severe and deadly mosquito-borne disease. Although treatable, the continuous emergence of multi-drug resistant parasite strains urgently calls for the development of novel antimalarial agents. P. falciparum parasites synthesize essential isoprenoid precursors, isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), via a non-mevalonate pathway: the methylerythritol phosphate (MEP) pathway. This pathway is not utilized by humans. Thus, compounds that target the MEP pathway and disrupt isoprenoid biosynthesis in P. falciparum hold promise as potent and safe new antimalarial agents, that engage new targets. Previously, we and others identified MMV008138 from the Malaria Box as a MEP pathway targeting compound. Later work revealed that it targets the IspD enzyme within the MEP pathway. Work in the Carlier group has established preliminary structure-activity relationship (SAR) of MMV008138: 1) (1R,3S)-configuration is required; 2) 2', 4'-disubstitution of the D-ring with small, electronegative substituents; 3) functional importance of carboxylate acid at C3. In this work, I aim to gain further insight into the C3 SAR and A-ring SAR of lead compound MMV008138. Synthesized acid bioisosteres and A-ring analogs of MMV008138 were evaluated in their ability to inhibit P. falciparum parasite growth. We showed that the C3 substituent of MMV008138 has a very tight SAR, and likely interacts with a very constricted pocket within the PfIspD enzyme. A-ring modifications are limited to certain positions of MMV001838 and need to be sterically small. However, we have yet to identify a modification that significantly improves drug lead potency. Future work will continue towards understanding the A-ring SAR of MMV008138, as well as D-ring SAR and C1-SAR. Efforts will also be directed towards finding analogs with improved potency, transport and metabolic stability.