Browsing by Author "Liu, Min"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- Connexin 43 confers chemoresistance through activating PI3KPridham, Kevin J.; Shah, Farah; Hutchings, Kasen R.; Sheng, Kevin L.; Guo, Sujuan; Liu, Min; Kanabur, Pratik; Lamouille, Samy Y.; Lewis, Gabrielle; Morales, Marc; Jourdan, L. Jane; Grek, Christina L.; Ghatnekar, Gautam S.; Varghese, Robin T.; Kelly, Deborah F.; Gourdie, Robert G.; Sheng, Zhi (Springer Nature, 2022-01-12)Circumventing chemoresistance is crucial for effectively treating cancer including glioblastoma, a lethal brain cancer. The gap junction protein connexin 43 (Cx43) renders glioblastoma resistant to chemotherapy; however, targeting Cx43 is difficult because mechanisms underlying Cx43-mediated chemoresistance remain elusive. Here we report that Cx43, but not other connexins, is highly expressed in a subpopulation of glioblastoma and Cx43 mRNA levels strongly correlate with poor prognosis and chemoresistance in this population, making Cx43 the prime therapeutic target among all connexins. Depleting Cx43 or treating cells with αCT1–a Cx43 peptide inhibitor that sensitizes glioblastoma to the chemotherapy temozolomide–inactivates phosphatidylinositol-3 kinase (PI3K), whereas overexpression of Cx43 activates this signaling. Moreover, αCT1-induced chemo-sensitization is counteracted by a PI3K active mutant. Further research reveals that αCT1 inactivates PI3K without blocking the release of PI3K-activating molecules from membrane channels and that Cx43 selectively binds to the PI3K catalytic subunit β (PIK3CB, also called PI3Kβ or p110β), suggesting that Cx43 activates PIK3CB/p110β independent of its channel functions. To explore the therapeutic potential of simultaneously targeting Cx43 and PIK3CB/p110β, αCT1 is combined with TGX-221 or GSK2636771, two PIK3CB/p110β-selective inhibitors. These two different treatments synergistically inactivate PI3K and sensitize glioblastoma cells to temozolomide in vitro and in vivo. Our study has revealed novel mechanistic insights into Cx43/PI3K-mediated temozolomide resistance in glioblastoma and demonstrated that targeting Cx43 and PIK3CB/p110β together is an effective therapeutic approach for overcoming chemoresistance.
- Discovery and ramifications of incidental Magnéli phase generation and release from industrial coal-burningYang, Yi; Chen, Bo; Hower, James C.; Schindler, Michael; Winkler, Christopher; Brandt, Jessica E.; Di Giulio, Richard T.; Ge, Jianping; Liu, Min; Fu, Yuhao; Zhang, Lijun; Chen, Yu-ru; Priya, Shashank; Hochella, Michael F. Jr. (Nature Publishing Group, 2017-01-12)Coal, as one of the most economic and abundant energy sources, remains the leading fuel for producing electricity worldwide. Yet, burning coal produces more global warming CO2 relative to all other fossil fuels, and it is a major contributor to atmospheric particulate matter known to have a deleterious respiratory and cardiovascular impact in humans, especially in China and India. Here we have discovered that burning coal also produces large quantities of otherwise rare Magneli phases (Ti; x; O2x–1 with 4 ≤ x ≤ 9) from TiO2 minerals naturally present in coal. This provides a new tracer for tracking solid-state emissions worldwide from industrial coal-burning. In its first toxicity testing, we have also shown that nanoscale Magneli phases have potential toxicity pathways that are not photoactive like TiO2 phases, but instead seem to be biologically active without photostimulation. In the future, these phases should be thoroughly tested for their toxicity in the human lung. Solid-state emissions from coal burning remain an environmental concern. Here, the authors have found that TiO2 minerals present in coal are converted into titanium suboxides during burning, and initial biotoxicity screening suggests that further testing is needed to look into human lung consequences.
- Nanoparticles in road dust from impervious urban surfaces: distribution, identification, and environmental implicationsYang, Yi; Vance, Marina; Tou, Feiyun; Tiwari, Andrea J.; Liu, Min; Hochella, Michael F. Jr. (Royal Society of Chemistry, 2016-05-24)Nanoparticles (NPs) resulting from urban road dust resuspension are an understudied class of pollutants in urban environments with strong potential for health hazards. The objective of this study was to investigate the heavy metal and nanoparticle content of PM2.5 generated in the laboratory using novel aerosolization of 66 road dust samples collected throughout the mega-city of Shanghai (China). The samples were characterized using an array of techniques including inductively-coupled plasma mass spectrometry, aerosol size distribution measurements, and scanning and transmission electron microscopy coupled with elemental characterization and electron diffraction. Principal metal concentrations were plotted geospatially. Results show that metals were generally enriched in aerosolized samples relative to the bulk dust. Elevated concentrations of metals were found mostly in downtown areas with intense traffic. Fe-, Pb-, Zn-, and Ba-containing NPs were identified using electron microscopy, spectroscopy, and diffraction, and we tentatively identify most of them as either engineered, incidental, or naturally occurring NPs. For example, dangerous Pb sulfide and sulfate NPs likely have an incidental origin and are also sometimes associated with Sn; we believe that these materials originated from an e-waste plant. Size distributions of most aerosolized samples presented a peak in the ultrafine range (<100 nm). We estimate that 3.2 ± 0.7 μg mg−1 of Shanghai road dust may become resuspended in the form of PM2.5. Aerosolization, as done in this study, seems to be a very useful approach to study NPs in dust.
- Selective regulation of chemosensitivity in glioblastoma by phosphatidylinositol 3-kinase betaPridham, Kevin J.; Hutchings, Kasen R.; Beck, Patrick; Liu, Min; Xu, Eileen; Saechin, Erin; Bui, Vincent; Patel, Chinkal; Solis, Jamie; Huang, Leah; Tegge, Allison; Kelly, Deborah F.; Sheng, Zhi (Elsevier, 2024-06-21)Resistance to chemotherapies such as temozolomide is a major hurdle to effectively treat therapy-resistant glioblastoma. This challenge arises from the activation of phosphatidylinositol 3-kinase (PI3K), which makes it an appealing therapeutic target. However, non-selectively blocking PI3K kinases PI3K⍺/β/𝛿/𝛾 has yielded undesired clinical outcomes. It is, therefore, imperative to investigate individual kinases in glioblastoma’s chemosensitivity. Here,wereport that PI3K kinases were unequally expressed in glioblastoma, with levels of PI3Kβ being the highest. Patients deficient of O6-methylguanine-DNA-methyltransferase(MGMT) and expressing elevated levels of PI3Kβ, defined as MGMT-deficient/PI3Kβ-high, were less responsive to temozolomide and experienced poor prognosis. Consistently, MGMT-deficient/PI3Kβ-high glioblastoma cells were resistant to temozolomide. Perturbation of PI3Kβ, but not other kinases, sensitized MGMTdeficient/ PI3Kβ-high glioblastoma cells or tumors to temozolomide. Moreover, PI3Kβ-selective inhibitors and temozolomide synergistically mitigated the growth of glioblastoma stem cells. Our results have demonstrated an essential role of PI3Kβ in chemoresistance, making PI3Kβ-selective blockade an effective chemosensitizer for glioblastoma.
- Sex linked behavioral and hippocampal transcriptomic changes in mice with cell-type specific Egr1 lossSwilley, Cody; Lin, Yu; Zheng, Yuze; Xu, Xiguang; Liu, Min; Jarome, Timothy J.; Hodes, Georgia E.; Xie, Hehuang (Frontiers, 2023-10-19)The transcription factor EGR1 is instrumental in numerous neurological processes, encompassing learning and memory as well as the reaction to stress. Egr1 complete knockout mice demonstrate decreased depressive or anxiety-like behavior and impaired performance in spatial learning and memory. Nevertheless, the specific functions of Egr1 in distinct cell types have been largely underexplored. In this study, we cataloged the behavioral and transcriptomic character of Nestin-Cre mediated Egr1 conditional knockout (Egr1cKO) mice together with their controls. Although the conditional knockout did not change nociceptive or anxiety responses, it triggered changes in female exploratory activity during anxiety testing. Hippocampus-dependent spatial learning in the object location task was unaffected, but female Egr1cKO mice did exhibit poorer retention during testing on a contextual fear conditioning task compared to males. RNA-seq data analyses revealed that the presence of the floxed Egr1 cassette or Nestin-Cre driver alone exerts a subtle influence on hippocampal gene expression. The sex-related differences were amplified in Nestin-Cre mediated Egr1 conditional knockout mice and female mice are more sensitive to the loss of Egr1 gene. Differentially expressed genes resulted from the loss of Egr1 in neuronal cell lineage were significantly associated with the regulation of Wnt signaling pathway, extracellular matrix, and axon guidance. Altogether, our results demonstrate that Nestin-Cre and the loss of Egr1 in neuronal cell lineage have distinct impacts on hippocampal gene expression in a sex-specific manner.
- Sex-Linked Growth Disorder and Aberrant Pituitary Gene Expression in Nestin-Cre-Mediated Egr1 Conditional Knockout MiceSwilley, Cody; Lin, Yu; Zheng, Yuze; Xu, Xiguang; Liu, Min; Zimmerman, Kurt; Xie, Hehuang (MDPI, 2023-07-06)Genes that regulate hormone release are essential for maintaining metabolism and energy balance. Egr1 encodes a transcription factor that regulates hormone production and release, and a decreased in growth hormones has been reported in Egr1 knockout mice. A reduction in growth hormones has also been observed in Nestin-Cre mice, a model frequently used to study the nervous system. Currently, it is unknown how Egr1 loss or the Nestin-Cre driver disrupt pituitary gene expression. Here, we compared the growth curves and pituitary gene expression profiles of Nestin-Cre-mediated Egr1 conditional knockout (Egr1cKO) mice with those of their controls. Reduced body weight was observed in both the Nestin-Cre and Egr1cKO mice, and the loss of Egr1 had a slightly more severe impact on female mice than on male mice. RNA-seq data analyses revealed that the sex-related differences were amplified in the Nestin-Cre-mediated Egr1 conditional knockout mice. Additionally, in the male mice, the influence of Egr1cKO on pituitary gene expression may be overridden by the Nestin-Cre driver. Differentially expressed genes associated with the Nestin-Cre driver were significantly enriched for genes related to growth factor activity and binding. Altogether, our results demonstrate that Nestin-Cre and the loss of Egr1 in the neuronal cell lineage have distinct impacts on pituitary gene expression in a sex-specific manner.
- Space identityLiu, Min (Virginia Tech, 2005-07-05)As an architectural language, what elements and systems constitute a work of architecture? They are the structural system, enclosure system, circulation system, functional requirements, context, light, views, proportion, scale, forms, cultural characteristics, color and many others. In this thesis, I focus on the structural system, the spatial organization and quality of light with a view to how they contribute to the identity of spaces. the vehicle of my study is an Environmental Learning Center, for Franklin County, Virginia. The building design enploys two different structural systems in two parts of the building, arranging dissimilar spatial organizations in building sections. Various enclosure materials are used to exhibit distinct light qualities. Design is not only to satisfy functional needs, but to architecturally determine spatial differentiation,which accordingly generates the identity of spaces.