Browsing by Author "Liu, Mingming"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- HMMvar-func: a new method for predicting the functional outcome of genetic variantsLiu, Mingming; Watson, Layne T.; Zhang, Liqing (2015-10-30)Background Numerous tools have been developed to predict the fitness effects (i.e., neutral, deleterious, or beneficial) of genetic variants on corresponding proteins. However, prediction in terms of whether a variant causes the variant bearing protein to lose the original function or gain new function is also needed for better understanding of how the variant contributes to disease/cancer. To address this problem, the present work introduces and computationally defines four types of functional outcome of a variant: gain, loss, switch, and conservation of function. The deployment of multiple hidden Markov models is proposed to computationally classify mutations by the four functional impact types. Results The functional outcome is predicted for over a hundred thyroid stimulating hormone receptor (TSHR) mutations, as well as cancer related mutations in oncogenes or tumor suppressor genes. The results show that the proposed computational method is effective in fine grained prediction of the functional outcome of a mutation, and can be used to help elucidate the molecular mechanism of disease/cancer causing mutations. The program is freely available at http://bioinformatics.cs.vt.edu/zhanglab/HMMvar/download.php Conclusions This work is the first to computationally define and predict functional impact of mutations, loss, switch, gain, or conservation of function. These fine grained predictions can be especially useful for identifying mutations that cause or are linked to cancer.
- Predicting the combined effect of multiple genetic variantsLiu, Mingming; Watson, Layne T.; Zhang, Liqing (2015-07-30)Background Many genetic variants have been identified in the human genome. The functional effects of a single variant have been intensively studied. However, the joint effects of multiple variants in the same genes have been largely ignored due to their complexity or lack of data. This paper uses HMMvar, a hidden Markov model based approach, to investigate the combined effect of multiple variants from the 1000 Genomes Project. Two tumor suppressor genes, TP53 and phosphatase and tensin homolog (PTEN), are also studied for the joint effect of compensatory indel variants. Results Results show that there are cases where the joint effect of having multiple variants in the same genes is significantly different from that of a single variant. The deleterious effect of a single indel variant can be alleviated by their compensatory indels in TP53 and PTEN. Compound mutations in two genes, β-MHC and MyBP-C, leading to severer cardiovascular disease compared to single mutations, are also validated. Conclusions This paper extends the functionality of HMMvar, a tool for assigning a quantitative score to a variant, to measure not only the deleterious effect of a single variant but also the joint effect of multiple variants. HMMvar is the first tool that can predict the functional effects of both single and general multiple variations on proteins. The precomputed scores for multiple variants from the 1000 Genomes Project and the HMMvar package are available at https://bioinformatics.cs.vt.edu/zhanglab/HMMvar/
- Predicting the Functional Effects of Human Short Variations Using Hidden Markov ModelsLiu, Mingming (Virginia Tech, 2015-06-24)With the development of sequencing technologies, more and more sequence variants are available for investigation. Different types of variants in the human genome have been identified, including single nucleotide polymorphisms (SNPs), short insertions and deletions (indels), and large structural variations such as large duplications and deletions. Of great research interest is the functional effects of these variants. Although many programs have been developed to predict the effect of SNPs, few can be used to predict the effect of indels or multiple variants, such as multiple SNPs, multiple indels, or a combination of both. Moreover, fine grained prediction of the functional outcome of variants is not available. To address these limitations, we developed a prediction framework, HMMvar, to predict the functional effects of coding variants (SNPs or indels), using profile hidden Markov models (HMMs). Based on HMMvar, we proposed HMMvar-multi to explore the joint effects of multiple variants in the same gene. For fine grained functional outcome prediction, we developed HMMvar-func to computationally define and predict four types of functional outcome of a variant: gain, loss, switch, and conservation of function.
- Quantitative prediction of the effect of genetic variation using hidden Markov modelsLiu, Mingming; Watson, Layne T.; Zhang, Liqing (2014-01-09)Background With the development of sequencing technologies, more and more sequence variants are available for investigation. Different classes of variants in the human genome have been identified, including single nucleotide substitutions, insertion and deletion, and large structural variations such as duplications and deletions. Insertion and deletion (indel) variants comprise a major proportion of human genetic variation. However, little is known about their effects on humans. The absence of understanding is largely due to the lack of both biological data and computational resources. Results This paper presents a new indel functional prediction method HMMvar based on HMM profiles, which capture the conservation information in sequences. The results demonstrate that a scoring strategy based on HMM profiles can achieve good performance in identifying deleterious or neutral variants for different data sets, and can predict the protein functional effects of both single and multiple mutations. Conclusions This paper proposed a quantitative prediction method, HMMvar, to predict the effect of genetic variation using hidden Markov models. The HMM based pipeline program implementing the method HMMvar is freely available at https://bioinformatics.cs.vt.edu/zhanglab/hmm.
- A Transcriptome Post-Scaffolding Method for Assembling High Quality ContigsLiu, Mingming; Adelman, Zach N.; Myles, Kevin M.; Zhang, Liqing (Hindawi Publishing Corp, 2014-05-28)With the rapid development of high throughput sequencing technologies, new transcriptomes can be sequenced for little cost with high coverage. Sequence assembly approaches have been modified to meet the requirements for de novo transcriptomes, which have complications not found in traditional genome assemblies such as variation in coverage for each candidate mRNA and alternative splicing. As a consequence, de novo assembly strategies tend to generate a large number of redundant contigs due to sequence variations, which adversely affects downstream analysis and experiments. In this work we proposed TransPS, a transcriptome post-scaffolding method, to generate high quality, nonredundant de novo transcriptomes. TransPS shows promising results on the test transcriptome datasets, where redundancy is greatly reduced by more than 50% and, at the same time, coverage is improved considerably. The web server and source code are available.