Browsing by Author "Liu, Sunhao"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Direct Observation of Circularly Polarized Nonlinear Optical Activities in Chiral Hybrid Lead HalidesLiu, Sunhao; Wang, Xiaoming; Dou, Yixuan; Wang, Qian; Kim, Jiyoon; Slebodnick, Carla; Yan, Yanfa; Quan, Lina (American Chemical Society, 2024-04-03)Circularly polarized light emission is a crucial application in imaging, sensing, and photonics. However, utilizing low-energy photons to excite materials, as opposed to high-energy light excitation, can facilitate deep-tissue imaging and sensing applications. The challenge lies in finding materials capable of directly generating circularly polarized nonlinear optical effects. In this study, we introduce a chiral hybrid lead halide (CHLH) material system, R/S-DPEDPb3Br8·H2O (DPED = 1,2-diphenylethylenediammonium), which can directly produce circularly polarized second harmonic generation (CP-SHG) through linearly polarized infrared light excitation, exhibiting a polarization efficiency as high as 37% at room temperature. To understand the spin relaxation mechanisms behind the high polarization efficiency, we utilized two models, so-called D’yakonov-Perel’ (DP) and Bir-Aronov-Pikus (BAP) mechanisms. The unique zigzag inorganic frameworks within the hybrid structure are believed to reduce the dielectric confinement and exciton binding energy, thus enhancing spin polarization, especially in regions with a high excitation pump fluence based on the DP mechanism. In the case of low excitation pump fluence, the BAP mechanism dominates, as evidenced by the observed decrease in the polarization ratio from CP-SHG measurement. Using density functional theory analysis, we elucidate how the distinctive 8-coordination environment of lead bromide building blocks effectively suppresses spin-orbit coupling at the conduction band minimum. This suppression significantly diminishes spin-splitting, thereby slowing the spin relaxation rate.
- Large exchange-driven intrinsic circular dichroism of a chiral 2D hybrid perovskiteLi, Shunran; Xu, Xian; Kocoj, Conrad A.; Zhou, Chenyu; Li, Yanyan; Chen, Du; Bennett, Joseph A.; Liu, Sunhao; Quan, Lina; Sarker, Suchismita; Liu, Mingzhao; Qiu, Diana Y.; Guo, Peijun (Nature Portfolio, 2024-03-22)In two-dimensional chiral metal-halide perovskites, chiral organic spacers endow structural and optical chirality to the metal-halide sublattice, enabling exquisite control of light, charge, and electron spin. The chiroptical properties of metal-halide perovskites have been measured by transmissive circular dichroism spectroscopy, which necessitates thin-film samples. Here, by developing a reflection-based approach, we characterize the intrinsic, circular polarization-dependent complex refractive index for a prototypical two-dimensional chiral lead-bromide perovskite and report large circular dichroism for single crystals. Comparison with ab initio theory reveals the large circular dichroism arises from the inorganic sublattice rather than the chiral ligand and is an excitonic phenomenon driven by electron-hole exchange interactions, which breaks the degeneracy of transitions between Rashba-Dresselhaus-split bands, resulting in a Cotton effect. Our study suggests that previous data for spin-coated films largely underestimate the optical chirality and provides quantitative insights into the intrinsic optical properties of chiral perovskites for chiroptical and spintronic applications.
- Supramolecular Metal Halide Complexes for High-Temperature Non-linear Optical SwitchesWang, Qian; Jin, Jianbo; Wang, Zhongxuan; Ren, Shenqiang; Ye, Qingyu; Dou, Yixuan; Liu, Sunhao; Morris, Amanda; Slebodnick, Carla; Quan, Lina (American Chemical Society, 2024-02-23)Nonlinear optical (NLO) switching materials, which exhibit reversible intensity modulation in response to thermal stimuli, have found extensive applications across diverse fields including sensing, photoelectronics, and photonic applications. While significant progress has been made in solid-state NLO switching materials, these materials typically showcase their highest NLO performance near room temperature. However, this performance drastically deteriorates upon heating, primarily due to the phase transition undergone by the materials from noncentrosymmetric to centrosymmetric phase. Here, we introduce a new class of NLO switching materials, solid-state supramolecular compounds 18-Crown-6 ether@Cu2Cl4·4H2O (1·4H2O), exhibiting reversible and stable NLO switching when subjected to near-infrared (NIR) photoexcitation and/or thermal stimuli. The reversible crystal structure in response to external stimuli is attributed to the presence of a weakly coordinated bridging water molecule facilitated by hydrogen bonding/chelation interactions between the metal halide and crown-ether supramolecules. We observed an exceptionally high second-harmonic generation (SHG) signal under continuous photoexcitation, even at temperatures exceeding 110 °C. In addition, the bridging water molecules within the complex can be released and recaptured in a fully reversible manner, all without requiring excessive energy input. This feature allows for precise control of SHG signal activation and deactivation through structural transformations, resulting in a high-contrast off/on ratio, reaching values in the million-fold range.