Browsing by Author "Liu, Tianyu"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- Addressing the Achilles' heel of pseudocapacitive materials: Long-term stabilityLiu, Tianyu; Li, Yat (2020-09)Electrode materials with high energy densities and long-lasting performances are crucial to durable and reliable electrochemical energy storage devices for modern information technologies (eg, Internet of things). In terms of supercapacitors, their low energy densities could be enhanced by using pseudocapacitive electrodes, but meanwhile, their ultralong lifetimes are compromised by the limited charge-discharge cycling stabilities of pseudocapacitive materials. This review article discusses on the cycling instability issues of five common pseudocapacitive materials: conjugated polymers (or conducting polymers), metal oxides, metal nitrides, metal carbides, and metal sulfides. Specifically, the article includes the fundamentals of the failure modes of these materials, as well as thoroughly surveys the design rationales and technical details of the cycling-stability-boosting tactics for pseudocapacitive materials that reported in the literature. Additionally, promising opportunities, future challenges, and possible solutions associated with pseudocapacitive materials are discussed.
- Block copolymer derived uniform mesopores enable ultrafast electron and ion transport at highmass loadingsLiu, Tianyu; Zhou, Zhenping; Guo, Yichen; Guo, Dong; Liu, Guoliang (Nature Research, 2019)High mass loading and fast charge transport are two crucial but often mutually exclusive characteristics of pseudocapacitors. On conventional carbon supports, high mass loadings inevitably lead to sluggish electron conduction and ion diffusion due to thick pseudocapacitive layers and clogged pores. Here we present a design principle of carbon supports, utilizing self-assembly and microphase-separation of block copolymers. We synthesize porous carbon fibers (PCFs) with uniform mesopores of 11.7 nm, which are partially filled with MnO2 of <2 nm in thickness. The uniform mesopores and ultrathin MnO2 enable fast electron/ion transport comparable to electrical-double-layer-capacitive carbons. At mass loadings approaching 7mg cm−2, the gravimetric and areal capacitances of MnO2 (~50% of total mass) reach 1148 F g−1 and 3141 mF cm−2, respectively. Our MnO2-coated PCFs outperform other MnO2-based electrodes at similar loadings, highlighting the great promise of block copolymers for designing PCF supports for electrochemical applications.
- Block copolymer–based porous carbon fibersZhou, Zhengping; Liu, Tianyu; Khan, Assad U.; Liu, Guoliang (American Association for the Advancement of Science, 2019-02-01)Carbon fibers have high surface areas and rich functionalities for interacting with ions, molecules, and particles. However, the control over their porosity remains challenging. Conventional syntheses rely on blending polyacrylonitrile with sacrificial additives, which macrophase-separate and result in poorly controlled pores after pyrolysis. Here, we use block copolymermicrophase separation, a fundamentally disparate approach to synthesizing porous carbon fibers (PCFs) with well-controlledmesopores (~10 nm) and micropores (~0.5 nm).Without infiltrating any carbon precursors or dopants, poly(acrylonitrile-block-methyl methacrylate) is directly converted to nitrogen and oxygen dual-doped PCFs. Owing to the interconnected network and the highly optimal bimodal pores, PCFs exhibit substantially reduced ion transport resistance and an ultrahigh capacitance of 66 µF cm⁻² (6.6 times that of activated carbon). The approach of using block copolymer precursors revolutionizes the synthesis of PCFs. The advanced electrochemical properties signify that PCFs represent a new platform material for electrochemical energy storage.
- Boosting the Power-Generation Performance of Micro-Sized Al-H2O2 Fuel Cells by Using Silver Nanowires as the CathodeZhang, Heng; Yang, Yang; Liu, Tianyu; Chang, Honglong (MDPI, 2018-09-03)Micro-sized fuel cells represent one of the pollution-free devices available to power portable electronics. However, the insufficient power output limits the possibility of micro-sized fuel cells competing with other power sources, including supercapacitors and lithium batteries. In this study, a novel aluminum-hydrogen peroxide fuel cell is fabricated using uniform silver nanowires with diameters of 0.25 µm as the catalyst at the cathode side. The Ag nanowire solution is prepared via a polyol method, and mixed uniformly with Nafion and ethanol to enhance the adhesion of Ag nanowires. We carry out electrochemical tests, including cyclic voltammetry, electrochemical impedance spectroscopy, and Tafel polarization, to characterize the performance of this catalyst in H2O2 reduction. The Ag nanowires exhibit a high effectiveness and durability while catalyzing the reduction of H2O2 with a low impedance. The micro-sized Al-H2O2 fuel cell equipped with Ag nanowires delivers a power density of 43 W·m−2 under a low concentration of H2O2 (0.1 M), which is substantially higher than the previously reported devices.
- Cobalt-Containing Nanoporous Nitrogen-Doped Carbon Nanocuboids from Zeolite Imidazole Frameworks for SupercapacitorsSong, Yu; Zhang, Mingyue; Liu, Tianyu; Li, Tianjiao; Guo, Di; Liu, Xiao-Xia (MDPI, 2019-08-02)Pyrolyzing metal–organic frameworks (MOFs) typically yield composites consisting of metal/metal oxide nanoparticles finely dispersed on carbon matrices. The blend of pseudocapacitive metal oxides and conductive metals, as well as highly porous carbon networks, offer unique opportunities to obtain supercapacitor electrodes with mutually high capacitances and excellent rate capabilities. Herein, we demonstrate nitrogen-doped carbon nanocuboid arrays grown on carbon fibers and incorporating cobalt metal and cobalt metal oxides. This composite was synthesized via pyrolysis of a chemical bath deposited MOF, cobalt-containing zeolite imidazole framework (Co–ZIF). The active materials for charge storage are the cobalt oxide and nitrogen-doped carbon. Additionally, the Co metal and the nanoporous carbon network facilitated electron transport and the rich nanopores in each nanocuboid shortened ion diffusion distance. Benefited from these merits, our Co–ZIF-derived electrode delivered an areal capacitance of 1177 mF cm−2 and excellent cycling stability of ~94% capacitance retained after 20,000 continuous charge–discharge cycles. An asymmetric supercapacitor prototype having the Co–ZIF-derived hybrid material (positive electrode) and activated carbon (negative electrode) achieved a maximal volumetric energy density of 1.32 mWh cm−3 and the highest volumetric power density of 376 mW cm−3. This work highlights the promise of metal–metal oxide–carbon nanostructured composites as electrodes in electrochemical energy storage devices.
- Exceptional capacitive deionization rate and capacity by block copolymer–based porous carbon fibersLiu, Tianyu; Serrano, Joel; Elliott, John; Yang, Xiaozhou; Cathcart, William; Wang, Zixuan; He, Zhen; Liu, Guoliang (American Association for the Advancement of Science, 2020-04-17)Capacitive deionization (CDI) is energetically favorable for desalinating low-salinity water. The bottlenecks of current carbon-based CDI materials are their limited desalination capacities and time-consuming cycles, caused by insufficient ion-accessible surfaces and retarded electron/ion transport. Here, we demonstrate porous carbon fibers (PCFs) derived from microphase-separated poly(methyl methacrylate)-block-polyacrylonitrile (PMMA-b-PAN) as an effective CDI material. PCF has abundant and uniform mesopores that are interconnected with micropores. This hierarchical porous structure renders PCF a large ion-accessible surface area and a high desalination capacity. In addition, the continuous carbon fibers and interconnected porous network enable fast electron/ion transport, and hence a high desalination rate. PCF shows desalination capacity of 30 mgNaCl g⁻¹ PCF and maximal time-average desalination rate of 38.0 mgNaCl g⁻¹ PCF min⁻¹, which are about 3 and 40 times, respectively, those of typical porous carbons. Our work underlines the promise of block copolymer–based PCF for mutually high-capacity and high-rate CDI.
- Porous organic materials offer vast future opportunitiesLiu, Tianyu; Liu, Guoliang (2020-10-02)In light of the surging research on porous organic materials, we herein discuss the key issues of their porous structures, surface properties, and end functions. We also present an outlook on emerging opportunities, new applications, and data science-assisted materials discovery.
- A Review on Nano-/Microstructured Materials Constructed by Electrochemical Technologies for SupercapacitorsLv, Huizhen; Pan, Qing; Song, Yu; Liu, Xiao-Xia; Liu, Tianyu (2020-05-30)The article reviews the recent progress of electrochemical techniques on synthesizing nano-/microstructures as supercapacitor electrodes. With a history of more than a century, electrochemical techniques have evolved from metal plating since their inception to versatile synthesis tools for electrochemically active materials of diverse morphologies, compositions, and functions. The review begins with tutorials on the operating mechanisms of five commonly used electrochemical techniques, including cyclic voltammetry, potentiostatic deposition, galvanostatic deposition, pulse deposition, and electrophoretic deposition, followed by thorough surveys of the nano-/microstructured materials synthesized electrochemically. Specifically, representative synthesis mechanisms and the state-of-the-art electrochemical performances of exfoliated graphene, conducting polymers, metal oxides, metal sulfides, and their composites are surveyed. The article concludes with summaries of the unique merits, potential challenges, and associated opportunities of electrochemical synthesis techniques for electrode materials in supercapacitors.