Browsing by Author "Liu, Yajing"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Effect of Localized Mechanical Indentation on Skin Water Content Evaluated Using OCTGurjarpadhye, Abhijit A.; Vogt, William C.; Liu, Yajing; Rylander, Christopher G. (Hindawi, 2011-08-04)The highly disordered refractive index distribution in skin causes multiple scattering of incident light and limits optical imaging and therapeutic depth. We hypothesize that localized mechanical compression reduces scattering by expulsing unbound water from the dermal collagen matrix, increasing protein concentration and decreasing the number of index mismatch interfaces between tissue constituents. A swept-source optical coherence tomography (OCT) system was used to assess changes in thickness and group refractive index in ex vivo porcine skin, as well as changes in signal intensity profile when imaging in vivo human skin. Compression of ex vivo porcine skin resulted in an effective strain of −58.5%, an increase in refractive index from 1.39 to 1.50, and a decrease in water volume fraction from 0.66 to 0.20. In vivo OCT signal intensity increased by 1.5 dB at a depth of 1 mm, possibly due to transport of water away from the compressed regions. These finding suggest that local compression could be used to enhance light-based diagnostic and therapeutic techniques.
- Measurement of tissue optical properties during mechanical compression using swept source optical coherence tomographyLiu, Yajing (Virginia Tech, 2009-05-05)Laser-based photo-thermal therapies can provide minimally-invasive treatment of cancers. Their effectiveness is limited by light penetration depth in tissue due to its highly scattering properties. The highly disordered refractive index distribution in tissue leads to multiple-scattering of incident light. It has been hypothesized that mechanical compression has a great potential to enhance the capabilities of laser therapy by inducing localized water transport, decreasing the refractive index mismatch, and decreasing the scattering coefficient of tissue. To better understand this process, we investigated the refractive index change of ex-vivo dog skin during mechanical compression using a swept-source optical coherence tomography (OCT) device built in our lab. The Lorentz-Lorenz rule of mixtures was applied to evaluate the water and protein weight fraction of tissue simultaneously. Results show that the refractive index of skin increased from 1.38 to 1.52 during compression and water content decreased about 60%-70% when the skin sample was compressed by 70%. In addition, we conducted compression experiments on human finger, palm, back of hand, and front of forearm in vivo. OCT images of these skin sites before and after compression by 1 minute were compared. Optical thickness of epidermis and light penetration depth in the dermis were measured. The extended Huygens-Fresnel model was applied to measure the scattering coefficient μs of skin specimens. μs of skin was measured to be about 10-17 mm-1 before compression and decreased 60%-80% after compression, which increases the averaged light intensity by 2-7 dB and almost doubles light penetration depth in dermis. It is quite significant in laser therapies especially for treating epithelia cancers which originate at 1-2 mm beneath the tissue surface. In the OCT imaging of skin dehydration experiment, we conclude that dehydration is an important mechanism of mechanical clearing.