Browsing by Author "Liu, Yingjun"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Observations of sesquiterpenes and their oxidation products in central Amazonia during the wet and dry seasonsYee, Lindsay D.; Isaacman-VanWertz, Gabriel; Wernis, Rebecca A.; Meng, Meng; Rivera, Ventura; Kreisberg, Nathan M.; Hering, Susanne V.; Bering, Mads S.; Glasius, Marianne; Upshur, Mary Alice; Be, Ariana Gray; Thomson, Regan J.; Geiger, Franz M.; Offenberg, John H.; Lewandowski, Michael; Kourtchev, Ivan; Kalberer, Markus; de Sa, Suzane S.; Martin, Scot T.; Alexander, M. Lizabeth; Palm, Brett B.; Hu, Weiwei; Campuzano-Jost, Pedro; Day, Douglas A.; Jimenez, Jose L.; Liu, Yingjun; McKinney, Karena A.; Artaxo, Paulo; Viegas, Juarez; Manzi, Antonio; Oliveira, Maria B.; de Souza, Rodrigo; Machado, Luiz A. T.; Longo, Karla; Goldstein, Allen H. (European Geophysical Union, 2018-07-23)Biogenic volatile organic compounds (BVOCs) from the Amazon forest region represent the largest source of organic carbon emissions to the atmosphere globally. These BVOC emissions dominantly consist of volatile and intermediate-volatility terpenoid compounds that undergo chemical transformations in the atmosphere to form oxygenated condensable gases and secondary organic aerosol (SOA). We collected quartz filter samples with 12 h time resolution and performed hourly in situ measurements with a semi-volatile thermal desorption aerosol gas chromatograph (SV-TAG) at a rural site ("T3") located to the west of the urban center of Manaus, Brazil as part of the Green Ocean Amazon (GoAmazon2014/5) field campaign to measure intermediate-volatility and semi-volatile BVOCs and their oxidation products during the wet and dry seasons. We speciated and quantified 30 sesquiterpenes and 4 diterpenes with mean concentrations in the range 0.01-6.04 ng m(-3) (1670 ppq(v)). We estimate that sesquiterpenes contribute approximately 14 and 12% to the total reactive loss of O-3 via reaction with isoprene or terpenes during the wet and dry seasons, respectively. This is reduced from similar to 50-70% for within-canopy reactive O-3 loss attributed to the ozonolysis of highly reactive sesquiterpenes (e.g., beta-caryophyllene) that are reacted away before reaching our measurement site. We further identify a suite of their oxidation products in the gas and particle phases and explore their role in biogenic SOA formation in the central Amazon region. Synthesized authentic standards were also used to quantify gas-and particle-phase oxidation products derived from beta-caryophyllene. Using tracer-based scaling methods for these products, we roughly estimate that sesquiterpene oxidation contributes at least 0.4-5% (median 1 %) of total submicron OA mass. However, this is likely a low-end estimate, as evidence for additional unaccounted sesquiterpenes and their oxidation products clearly exists. By comparing our field data to laboratory-based sesquiterpene oxidation experiments we confirm that more than 40 additional observed compounds produced through sesquiterpene oxidation are present in Amazonian SOA, warranting further efforts towards more complete quantification.
- Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central AmazoniaPalm, Brett B.; de Sa, Suzane S.; Day, Douglas A.; Campuzano-Jost, Pedro; Hu, Weiwei; Seco, Roger; Sjostedt, Steven J.; Park, Jeong-Hoo; Guenther, Alex B.; Kim, Saewung; Brito, Joel; Wurm, Florian; Artaxo, Paulo; Thalman, Ryan; Wang, Jian; Yee, Lindsay D.; Wernis, Rebecca A.; Isaacman-VanWertz, Gabriel; Goldstein, Allen H.; Liu, Yingjun; Springston, Stephen R.; Souza, Rodrigo; Newburn, Matt K.; Alexander, M. Lizabeth; Martin, Scot T.; Jimenez, Jose L. (European Geophysical Union, 2018-01-17)Secondary organic aerosol (SOA) formation from ambient air was studied using an oxidation flow reactor (OFR) coupled to an aerosol mass spectrometer (AMS) during both the wet and dry seasons at the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) field campaign. Measurements were made at two sites downwind of the city of Manaus, Brazil. Ambient air was oxidized in the OFR using variable concentrations of either OH or O-3, over ranges from hours to days (O-3) or weeks (OH) of equivalent atmospheric aging. The amount of SOA formed in the OFR ranged from 0 to as much as 10 mu g m(-3), depending on the amount of SOA precursor gases in ambient air. Typically, more SOA was formed during nighttime than daytime, and more from OH than from O-3 oxidation. SOA yields of individual organic precursors under OFR conditions were measured by standard addition into ambient air and were confirmed to be consistent with published environmental chamber-derived SOA yields. Positive matrix factorization of organic aerosol (OA) after OH oxidation showed formation of typical oxidized OA factors and a loss of primary OA factors as OH aging increased. After OH oxidation in the OFR, the hygroscopicity of the OA increased with increasing elemental O : C up to O : C similar to 1.0, and then decreased as O : C increased further. Possible reasons for this decrease are discussed. The measured SOA formation was compared to the amount predicted from the concentrations of measured ambient SOA precursors and their SOA yields. While measured ambient precursors were sufficient to explain the amount of SOA formed from O-3, they could only explain 10-50% of the SOA formed from OH. This is consistent with previous OFR studies, which showed that typically unmeasured semivolatile and intermediate volatility gases (that tend to lack C=C bonds) are present in ambient air and can explain such additional SOA formation. To investigate the sources of the unmeasured SOA-forming gases during this campaign, multilinear regression analysis was performed between measured SOA formation and the concentration of gas-phase tracers representing different precursor sources. The majority of SOA-forming gases present during both seasons were of biogenic origin. Urban sources also contributed substantially in both seasons, while biomass burning sources were more important during the dry season. This study enables a better understanding of SOA formation in environments with diverse emission sources.
- Urban influence on the concentration and composition of submicron particulate matter in central Amazoniade Sa, Suzane S.; Palm, Brett B.; Campuzano-Jost, Pedro; Day, Douglas A.; Hu, Weiwei; Isaacman-VanWertz, Gabriel; Yee, Lindsay D.; Brito, Joel; Carbone, Samara; Ribeiro, Igor O.; Cirino, Glauber G.; Liu, Yingjun; Thalman, Ryan; Sedlacek, Arthur; Funk, Aaron; Schumacher, Courtney; Shilling, John E.; Schneider, Johannes; Artaxo, Paulo; Goldstein, Allen H.; Souza, Rodrigo A. F.; Wang, Jian; McKinney, Karena A.; Barbosa, Henrique M. J.; Alexander, M. Lizabeth; Jimenez, Jose L.; Martin, Scot T. (European Geophysical Union, 2018-08-23)An understanding of how anthropogenic emissions affect the concentrations and composition of airborne particulate matter (PM) is fundamental to quantifying the influence of human activities on climate and air quality. The central Amazon Basin, especially around the city of Manaus, Brazil, has experienced rapid changes in the past decades due to ongoing urbanization. Herein, changes in the concentration and composition of submicron PM due to pollution downwind of the Manaus metropolitan region are reported as part of the GoAmazon2014/5 experiment. A high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a suite of other gas-and particle-phase instruments were deployed at the "T3" research site, 70 km downwind of Manaus, during the wet season. At this site, organic components represented 79 +/- 7% of the non-refractory PM1 mass concentration on average, which was in the same range as several upwind sites. However, the organic PM1 was considerably more oxidized at T3 compared to upwind measurements. Positive-matrix factorization (PMF) was applied to the time series of organic mass spectra collected at the T3 site, yielding three factors representing secondary processes (73 +/- 15% of total organic mass concentration) and three factors representing primary anthropogenic emissions (27 +/- 15 %). Fuzzy c-means clustering (FCM) was applied to the afternoon time series of concentrations of NOy, ozone, total particle number, black carbon, and sulfate. Four clusters were identified and characterized by distinct air mass origins and particle compositions. Two clusters, Bkgd-1 and Bkgd2, were associated with background conditions. Bkgd-1 appeared to represent near-field atmospheric PM production and oxidation of a day or less. Bkgd-2 appeared to represent material transported and oxidized for two or more days, often with out-of-basin contributions. Two other clusters, Pol-1 and Pol-2, represented the Manaus influence, one apparently associated with the northern region of Manaus and the other with the southern region of the city. A composite of the PMF and FCM analyses provided insights into the anthropogenic effects on PM concentration and composition. The increase in mass concentration of submicron PM ranged from 25% to 200% under polluted compared with background conditions, including contributions from both primary and secondary PM. Furthermore, a comparison of PMF factor loadings for different clusters suggested a shift in the pathways of PM production under polluted conditions. Nitrogen oxides may have played a critical role in these shifts. Increased concentrations of nitrogen oxides can shift pathways of PM production from HO2-dominant to NO-dominant as well as increase the concentrations of oxidants in the atmosphere. Consequently, the oxidation of biogenic and anthropogenic precursor gases as well as the oxidative processing of preexisting atmospheric PM can be accelerated. This combined set of results demonstrates the susceptibility of atmospheric chemistry, air quality, and associated climate forcing to anthropogenic perturbations over tropical forests.