Browsing by Author "Long, John J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- AvrRxo1 Is a Bifunctional Type III Secreted Effector and Toxin-Antitoxin System Component with Homologs in Diverse Environmental ContextsTriplett, Lindsay R.; Shidore, Teja; Long, John J.; Miao, Jiamin; Wu, Shuchi; Han, Qian; Zhou, Changhe; Ishihara, Hiromichi; Li, Jianyong; Zhao, Bingyu Y.; Leach, Jan E. (PLOS, 2016-07-08)Toxin-antitoxin (TA) systems are ubiquitous bacterial systems that may function in genome maintenance and metabolic stress management, but are also thought to play a role in virulence by helping pathogens survive stress. We previously demonstrated that the Xanthomonas oryzae pv. oryzicola protein AvrRxo1 is a type III-secreted virulence factor that has structural similarities to the zeta family of TA toxins, and is toxic to plants and bacteria in the absence of its predicted chaperone Arc1. In this work, we confirm that AvrRxo1 and its binding partner Arc1 function as a TA system when expressed in Escherichia coli. Sequences of avrRxo1 homologs were culled from published and newly generated phytopathogen genomes, revealing that avrRxo1:arc1 modules are rare or frequently inactivated in some species and highly conserved in others. Cloning and functional analysis of avrRxo1 from Acidovorax avenae, A. citrulli, Burkholderia andropogonis, Xanthomonas translucens, and Xanthomonas euvesicatoria showed that some AvrRxo1 homologs share the bacteriostatic and Rxo1-mediated cell death triggering activities of AvrRxo1 from X. oryzae. Additional distant putative homologs of avrRxo1 and arc1 were identified in genomic or metagenomic sequence of environmental bacteria with no known pathogenic role. One of these distant homologs was cloned from the filamentous soil bacterium Cystobacter fuscus. avrRxo1 from C. fuscus caused watersoaking and triggered Rxo1-dependent cell collapse in Nicotiana benthamiana, but no growth suppression in E. coli was observed. This work confirms that a type III effector can function as a TA system toxin, and illustrates the potential of microbiome data to reveal new environmental origins or reservoirs of pathogen virulence factors.
- The effector AvrRxo1 phosphorylates NAD in plantaShidore, Teja; Broeckling, Corey D.; Kirkwood, Jay S.; Long, John J.; Miao, Jiamin; Zhao, Bingyu Y.; Leach, Jan E.; Triplett, Lindsay R. (PLOS, 2017-06-19)Gram-negative bacterial pathogens of plants and animals employ type III secreted effectors to suppress innate immunity. Most characterized effectors work through modification of host proteins or transcriptional regulators, although a few are known to modify small molecule targets. The Xanthomonas type III secreted avirulence factor AvrRxo1 is a structural homolog of the zeta toxin family of sugar-nucleotide kinases that suppresses bacterial growth. AvrRxo1 was recently reported to phosphorylate the central metabolite and signaling molecule NAD in vitro, suggesting that the effector might enhance bacterial virulence on plants through manipulation of primary metabolic pathways. In this study, we determine that AvrRxo1 phosphorylates NAD in planta, and that its kinase catalytic sites are necessary for its toxic and resistance-triggering phenotypes. A global metabolomics approach was used to independently identify 3'-NADP as the sole detectable product of AvrRxo1 expression in yeast and bacteria, and NAD kinase activity was confirmed in vitro. 3'-NADP accumulated upon transient expression of AvrRxo1 in Nicotiana benthamiana and in rice leaves infected with avrRxo1-expressing strains of X. oryzae. Mutation of the catalytic aspartic acid residue D193 abolished AvrRxo1 kinase activity and several phenotypes of AvrRxo1, including toxicity in yeast, bacteria, and plants, suppression of the flg22-triggered ROS burst, and ability to trigger an R gene-mediated hypersensitive response. A mutation in the Walker A ATPbinding motif abolished the toxicity of AvrRxo1, but did not abolish the 3'-NADP production, virulence enhancement, ROS suppression, or HR-triggering phenotypes of AvrRxo1. These results demonstrate that a type III effector targets the central metabolite and redox carrier NAD in planta, and that this catalytic activity is required for toxicity and suppression of the ROS burst.