Browsing by Author "Long, Xingyu"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Integration and Implementation (INT) CS 5604 F2020Hicks, Alexander; Thazhath, Mohit; Gupta, Suraj; Long, Xingyu; Poland, Cherie; Hsieh, Hsinhan; Mahajan, Yash (Virginia Tech, 2020-12-18)The first major goal of this project is to build a state-of-the-art information storage, retrieval, and analysis system that utilizes the latest technology and industry methods. This system is leveraged to accomplish another major goal, supporting modern search and browse capabilities for a large collection of tweets from the Twitter social media platform, web pages, and electronic theses and dissertations (ETDs). The backbone of the information system is a Docker container cluster running with Rancher and Kubernetes. Information retrieval and visualization is accomplished with containers in a pipelined fashion, whether in the cluster or on virtual machines, for Elasticsearch and Kibana, respectively. In addition to traditional searching and browsing, the system supports full-text and metadata searching. Search results include facets as a modern means of browsing among related documents. The system supports text analysis and machine learning to reveal new properties of collection data. These new properties assist in the generation of available facets. Recommendations are also presented with search results based on associations among documents and with logged user activity. The information system is co-designed by five teams of Virginia Tech graduate students, all members of the same computer science class, CS 5604. Although the project is an academic exercise, it is the practice of the teams to work and interact as though they are groups within a company developing a product. The teams on this project include three collection management groups -- Electronic Theses and Dissertations (ETD), Tweets (TWT), and Web-Pages (WP) -- as well as the Front-end (FE) group and the Integration (INT) group to help provide the overarching structure for the application. This submission focuses on the work of the Integration (INT) team, which creates and administers Docker containers for each team in addition to administering the cluster infrastructure. Each container is a customized application environment that is specific to the needs of the corresponding team. Each team will have several of these containers set up in a pipeline formation to allow scaling and extension of the current system. The INT team also contributes to a cross-team effort for exploring the use of Elasticsearch and its internally associated database. The INT team administers the integration of the Ceph data storage system into the CS Department Cloud and provides support for interactions between containers and the Ceph filesystem. During formative stages of development, the INT team also has a role in guiding team evaluations of prospective container components and workflows. The INT team is responsible for the overall project architecture and facilitating the tools and tutorials that assist the other teams in deploying containers in a development environment according to mutual specifications agreed upon with each team. The INT team maintains the status of the Kubernetes cluster, deploying new containers and pods as needed by the collection management teams as they expand their workflows. This team is responsible for utilizing a continuous integration process to update existing containers. During the development stage the INT team collaborates specifically with the collection management teams to create the pipeline for the ingestion and processing of new collection documents, crossing services between those teams as needed. The INT team develops a reasoner engine to construct workflows with information goal as input, which are then programmatically authored, scheduled, and monitored using Apache Airflow. The INT team is responsible for the flow, management, and logging of system performance data and making any adjustments necessary based on the analysis of testing results. The INT team has established a Gitlab repository for archival code related to the entire project and has provided the other groups with the documentation to deposit their code in the repository. This repository will be expanded using Gitlab CI in order to provide continuous integration and testing once it is available. Finally, the INT team will provide a production distribution that includes all embedded Docker containers and sub-embedded Git source code repositories. The INT team will archive this distribution on the Virginia Tech Docker Container Registry and deploy it on the Virginia Tech CS Cloud. The INT-2020 team owes a sincere debt of gratitude to the work of the INT-2019 team. This is a very large undertaking and the wrangling of all of the products and processes would not have been possible without their guidance in both direct and written form. We have relied heavily on the foundation they and their predecessors have provided for us. We continue their work with systematic improvements, but also want to acknowledge their efforts Ibid. Without them, our progress to date would not have been possible.
- Understanding Common Scratch Programming Idioms and Their Impact on Project RemixingLong, Xingyu (Virginia Tech, 2021-05-24)As Scratch has become one of the most popular educational programming languages, understanding its common programming idioms can benefit both computing educators and learners. This understanding can fine-tune the curricular development to help learners master the fundamentals of writing idiomatic code in their programming pursuits. Unfortunately, the research community's understanding of what constitutes idiomatic Scratch code has been limited. To help bridge this knowledge gap, we systematically identified idioms as based on canonical source code, presented in widely available educational materials. We implemented a tool that automatically detects these idioms to assess their prevalence within a large dataset of over 70K Scratch projects in different demographic and project categories. Since communal learning and the practice of remixing are one of the cornerstones of the Scratch programming community, we studied the relationship between common programming idioms and remixes. Having analyzed the original projects and their remixes, we observed that different idioms may associate with dissimilar types of code changes. Code changes in remixes are desirable, as they require a meaningful programming effort that spurs the learning process. The ability to substantially change a project in its remixes hinges on the project's code being easy to understand and modify. Our findings suggest that the presence of certain common idioms can indeed positively impact the degree of code changes in remixes. Our findings can help form a foundation of what comprises common Scratch programming idioms, thus benefiting both introductory computing education and Scratch programming tools.