Browsing by Author "Lowell, Robert P."
Now showing 1 - 20 of 23
Results Per Page
Sort Options
- 3D trench-parallel flow in the subduction region and correlation with seismic anisotropy directionMaiti, Tannistha (Virginia Tech, 2012-07-27)The motivation of this study is to understand the seismic anisotropy observations from various subduction regions of the world. In subduction zone backarcs both trench-parallel and trench-normal seismic anisotropy, or fast wave polarization direction of shear wave, are observed. In the mantle the general assumption is that seismic anisotropy is caused by Lattice Preferred Orientation (LPO) of olivine minerals and that the direction of anisotropy is an indicator of the direction of mantle flow. The complex pattern of seismic anisotropy observations suggests that the flow geometry in the vicinity of subduction zones differs at different subduction zones with some subduction zones having trench perpendicular flow, consistent with corner flow in the mantle wedge while other subduction zones have trench parallel flow, consistent with a mode of flow where material from the mantle wedge flows around the edges of the slab. It should be noted that the direction of LPO orientation can also be modified by the presence or absence of water, pressure, and temperature in the mantle and that it is possible that the difference in anisotropy observations reflects a difference in water content or thermal structure of back arcs. The aim of this study is to test whether the flow geometry of mantle in numerical subduction calculations can influence the direction of seismic anisotropy and if we parameters that control the pattern of flow can be identified. In this study we explicitly assume that seismic anisotropy occurs only due to plastic and dynamic re-crystallization of mantle mineral forming LPO. To approach the problem two different models are formulated. In one of the models the trench evolves self-consistently, with no prescribed artificial zones of weakness. The self-consistent model has a sticky-air layer at the top of the model domain that mimics a "free-surface." The other model has the same initial conditions but a trench-migration velocity boundary condition is imposed to the model. The mantle flow pattern for the self-consistent model is consistent with the 2D corner flow with no flow around the trench and no trench migration. However when the trench-migration velocity boundary condition is imposed, 3D flow around the mantle is observed. The stress field from these simulations are used to calculated instantaneous strain axis directions which correlate with LPO directions. The LPO orientations are measured from the models showing that the seismic-anisotropy direction is primarily trench-perpendicular for both models. Because the models have different flow patterns, the trench-perpendicular anisotropy alignment that is calculated for both the models is a bit puzzling. It could be that factors such as high temperature and non-linear rheology cause the LPO direction to align trench perpendicular in both the cases. It can also be possible that the 3D vertical flow is not strong enough to cause change in orientation of the LPO direction. From the present study it can be concluded that by looking at the LPO direction nature of mantle flow might not be predicted. This suggests that in addition to flow direction other factors such as the presence of water in mantle wedge, pressure, and high temperature due to viscous coupling modify the seismic anisotropy directions.
- Analysis of a conductive heat flow profile in the Ecuador Fracture ZoneKolandaivelu, Kannikha Parameswari; Harris, Robert N.; Lowell, Robert P.; Alhamad, Ahmed; Gregory, Emma P. M.; Hobbs, Richard W. (2017-06)We report 18 new conductive heat flow measurements collected from a sediment pond located in the inactive part of the Ecuador Fracture Zone in the Panama Basin. The data were collected along an east-west transect coincident with a multi-channel seismic reflection profile that extends from ODP Hole 504B to west of the sediment pond. Conductive models indicate that heat flow should decrease from approximate to 400 mW m(-2) on the 1.5 Ma western plate to approximate to 200 mW m(-2) on the 6 Ma eastern plate; however the observed heat flow increases nearly linearly toward the east from approximately 140 mW m(-2) to 190 mW m(-2). The mean value of 160 mW m(-2) represents an average heat flow deficit of which we attribute to lateral advective heat transfer between exposed outcrops on the western and eastern margins of the sediment pond. We apply the well-mixed aquifer model to explain this eastwardly flow, and estimate a volumetric flow rate per unit length in the north-south direction of approximate to 400 +/- 250 m(2) yr(-1) through the basement aquifer. Using a Darcy flow model with the mean flow rate, we estimate permeabilities of similar to 10(-11) and 10(-12) m(2) for aquifer thicknesses of 100 and 1000 m, respectively. The estimated permeabilities are similar to other estimates in young oceanic upper crust and suggest that vigorous convection within the basement significantly modifies the thermal regime of fracture zones. Additional heat flow data are needed to determine the prevalence and importance of advective heat transfer in fracture zones on a global scale. (C) 2017 The Authors. Published by Elsevier B.V.
- Application of fluid inclusions in geological thermometryFall, Andras (Virginia Tech, 2008-12-10)Many geologic processes occur in association with hydrothermal fluids and some of these fluids are eventually trapped as fluid inclusions in minerals formed during the process. Fluid inclusions provide valuable information on the pressure, temperature and fluid composition (PTX) of the environment of formation, hence understanding PTX properties of the fluid inclusions is required. The most important step of a fluid inclusion study is the identification of Fluid Inclusion Assemblages (FIA) that represent the finest (shortest time duration) geologic event that can be constrained using fluid inclusions. Homogenization temperature data obtained from fluid inclusions is often used to reconstruct temperature history of a geologic event. The precision with which fluid inclusions constrain the temperatures of geologic events depends on the precision with which the temperature of a fluid inclusion assemblage can be determined. Synthetic fluid inclusions trapped in the one-fluid-phase field are formed at a known and relatively constant temperature. However, microthermometry of synthetic fluid inclusions often reveals Th variations of about ± 1- 4 degrees Centigrade, or one order of magnitude larger than the precision of the measurement for an individual inclusion. The same range in Th was observed in well-constrained natural FIAs where the inclusions are assumed to have been trapped at the same time. The observed small variations are the result of the effect of the fluid inclusion size on the bubble collapsing temperature. As inclusions are heated the vapor bubble is getting smaller until the pressure difference between the pressure of the vapor and the confining pressure reaches a critical value and the bubble collapses. It was observed that smaller inclusions reach critical bubble radius and critical pressure differences at lower temperatures than larger inclusions within the same FIA. Homogenization temperature (Th) variations depend on many factors that vary within different geological environments. In order to determine minimum and acceptable Th ranges fro FIAs formed in different environments we investigated several geologic environments including sedimentary, metamorphic, and magmatic hydrothermal environments. The observed minimum Th ranges range from 1-4 degrees Centigrade and acceptable Th range from 5-25 degrees Centigrade. The variations are mostly caused by the fluid inclusion size, natural temperature and pressure fluctuations during the formation of an FIA and reequilibration after trapping. Fluid inclusions containing H₂O-CO₂-NaCl are common in many geologic environments and knowing the salinity of these inclusions is important to interpret PVTX properties of the fluids. A technique that combines Raman spectroscopy and microthermometry of individual inclusions was developed to determine the salinity of these inclusions. In order to determine the salinity, the pressure and temperature within the inclusion must be known. The pressure within the inclusions is determined using the splitting in the Fermi diad of the Raman spectra of the CO₂ at the clathrate melting temperature. Applying the technique with to synthetic fluid inclusions with known salinity suggests that the technique is valid and useable to determine salinity of H₂O-CO₂-NaCl fluid inclusions with unknown salinity.
- Characteristics of magma-driven hydrothermal systems at oceanic spreading centersLowell, Robert P.; Farough, Aida; Hoover, Joshua; Cummings, Kylin (American Geophysical Union, 2013-06)We use one- and two-limb single-pass models to de termine vent field characteristics such as mass flow rate Q, bulk permeability in the discharge zone k(d), thickness of the conductive boundary layer at the base of the system , magma replenishment rate, and residence time in the discharge zone. Data on vent temperature, vent field area, heat output, and the surface area and depth of the subaxial magma chamber (AMC) constrain the models. The results give Q similar to 100kg/s, k(d)similar to 10(-13)m(2), and similar to 10m, essentially independent of spreading rate, and detailed characteristics of the AMC. In addition, we find no correlation between heat output at individual vent fields and spreading rate or depth to the AMC. We conclude that high-temperature hydrothermal systems are driven by local magma supply rates in excess of that needed for steady state crustal production and that crustal permeability enables hydrothermal circulation to tap magmatic heat regardless of AMC depth. Using data on partitioning of heat flow between focused and diffuse flow, we find that 80-90% of the hydrothermal heat output is derived from high-temperature fluid, even though much of the heat output discharges as low-temperature fluid. In some cases, diffuse flow fluids may exhibit considerable conductive cooling or heating. By assuming conservative mixing of diffuse flow fluids at East Pacific Rise 9 degrees 50N, we find that most transport of metals such as Fe and Mn occurs in diffuse flow and that CO2, H-2, and CH4 are taken up by microbial activity.
- Dike-Driven Hydrothermal Processes on Mars and Sill Emplacement on EuropaCraft, Kathleen Liana (Virginia Tech, 2013-11-07)Evidence of hydrothermal and tectonic activity is found throughout our solar system. Here I investigated hydrothermal and fracturing processes on three planetary bodies: Earth, Mars and Europa. For the first project, we set up a dike-driven hydrothermal system and calculated heat and water flow using boundary layer theory. Water flow rates and volumes were then compared to the requirements for surface feature formation. Results found that the water volumes produced were adequate to form Athabasca Valles, except the flow rates were low. Episodic flood releases could enable the higher flow rates if water was first collected in aquifers, possibly stored beneath ice. On the icy moon Europa, I modeled a proposed sill emplacement mechanism using a finite element code and found that water could flow up through an approximately 10 km thick ice shell without freezing. The analysis also found that shallow cracks in the ice combined with deep cracks cause a stress direction change that helps the fracture turn and propagate more horizontally. However, the sill lifetime is less than the time a study by Dombard et al. [2013] calculated to be necessary for the formation of flexure fractures along margins of double ridges. Replenishment processes will be explored in future work to help extend sill lifetime. The last investigation calculated dike induced permeability changes in the crust on Earth and Mars and related the changes to water and heat flow rates and water volumes. Comparisons were made to event plume heat and elevated fluid temperatures observed at mid-ocean ridges. Heat values determined by the models agreed well with the 10^14 to 10^17 J expected. For the Martian model, water flow rates and volumes were compared to formation requirements for the valley system Athabasca Valles. Results found that flow rates would be adequate in the high permeability damage zone adjacent to the dike. However, the lowered permeability outside the damage zone would restrict replenishment flow and could cause the need for water storage and periodic release between flood events as the volume within the damage zone is not adequate for the valley formation.
- Evolution of heat flow, hydrothermal circulation and permeability on the young southern flank of the Costa Rica RiftKolandaivelu, Kannikha Parameswari; Harris, Robert N.; Lowell, Robert P.; Robinson, Adam H.; Wilson, Dean J.; Hobbs, Richard W. (2020-01)We analyse 67 new conductive heat-flow measurements on the southern flank of the Costa Rica Rift (CRR). Heat-flow measurements cover five sites ranging in oceanic crustal age between approximately 1.6 and 5.7 Ma, and are co-located with a high-resolution multichannel seismic line that extends from slightly north of the first heat-flow site (1.6 Ma) to beyond ODP Hole 504B in 6.9 Ma crust. For the five heat-flow sites, the mean observed conductive heat flow is approximate to 85 mW m(-2). This value is approximately 30 per cent of the mean lithospheric heat flux expected from a half-space conductive cooling model, indicating that hydrothermal processes account for about 70 per cent of the heat loss. The advective heat loss fraction varies from site to site and is explained by a combination of outcrop to outcrop circulation through exposed basement outcrops and discharge through faults. Supercritical convection in Layer 2A extrusives occurs between 1.6 and 3.5 Ma, and flow through a thinly sedimented basement high occurs at 4.6 Ma. Advective heat loss diminishes rapidly between approximate to 4.5 and approximate to 5.7 Ma, which contrasts with plate cooling reference models that predict a significant deficit in conductive heat flow up to ages approximate to 65 +/- 10 Ma. At approximate to 5.7 Ma the CRR topography is buried under sediment with an average thickness of approximate to 150 m, and hydrothermal circulation in the basement becomes subcritical or perhaps marginally critical. The absence of significant advective heat loss at approximate to 5.7 Ma at the CRR is thus a function of both burial of basement exposure under the sediment load and a reduction in basement permeability that possibly occurs as a result of mineral precipitation and original permeability at the time of formation. Permeability is a non-monotonic function of age along the southern flank of the CRR, in general agreement with seismic velocity tomography interpretations that reflect variations in the degree of ridge-axis magma supply and tectonic extension. Hydrothermal circulation in the young oceanic crust at the southern flank of CRR is affected by the interplay and complex interconnectedness of variations in permeability, sediment thickness, topographical structure, and tectonic and magmatic activities with age.
- Evolution of the Geohydrologic Cycle During the Past 700 Million YearsAngel, Adam M. (Virginia Tech, 2018-04-20)Water is a primary driver of the physical, geochemical and biological evolution of the Earth. The near-surface hydrosphere (exosphere) includes the atmosphere, cryosphere (glacial and polar ice), the biosphere, surface water, groundwater, and the oceans. The amounts of water in these various reservoirs of the hydrologic cycle have likely varied significantly over the past 700 Ma, with the cryosphere and continental biosphere reservoirs likely showing the most dramatic variations relative to the modern. For example, 700 Ma, during snowball-Earth conditions, the planet may have been almost entirely enveloped in ice, whereas throughout much of the Phanerozoic, greenhouse conditions predominately prevailed and the Earth had a much smaller cryosphere. Similarly, before about 444 Ma and the proliferation of land plants, the continental biosphere reservoir would have effectively non-existent. However, today, plants play a critical role in storage and transfer of water within the hydrologic cycle. Because the amount of water in the exosphere is thought to have remained relatively constant during the past 700 Ma, variations in the amounts of water held by the in the various exogenic reservoirs exert concomitant effects on other reservoirs in the exosphere. We present a conceptual and numerical model that examines variations in the amount of water in the various reservoirs of the near-surface hydrologic cycle (exosphere) during the past 700 Ma and quantify variations in the rates of exchange of water between these reservoirs in deep time. Variations in the sizes of major reservoirs are primarily controlled by changes in global average temperature, and the movement of water between the atmosphere, surface water, and ocean reservoirs varies in concert with the waxing and waning of the cryosphere. We find that variations in the sizes of major reservoirs are primarily controlled by changes in global average temperature, and the flux of water between the atmosphere, surface water, and ocean reservoirs varies in concert with the waxing and waning of the cryosphere, with some fluxes decreasing to 0.0 kg/yr during snowball-Earth conditions. We find that the amount of water precipitated from the atmosphere to the cryosphere increases from greenhouse conditions to -10.5°C and decreases from -10.5°C to snowball-earth conditions, highlighting "tipping-point" behavior due to changes in temperature and cryosphere surface area. The amount of surface runoff to the oceans varies in proportion to the amount of water removed from the surface water reservoir and transferred into the continental biosphere. Variations in the movement of water between near-surface reservoirs that are driven by the waxing and waning of the cryosphere and emergence and growth of plant life thus have significant implications for the transfer of weathering products to the oceans and could contribute to short-term (<1 Ma) variations in seawater composition and isotopic signatures.
- An experimental study on characterization of physical properties of ultramafic rocks and controls on evolution of fracture permeability during serpentinization at hydrothermal conditionsFarough, Aida (Virginia Tech, 2015-09-28)Serpentinization is a complex set of hydration reactions, where olivine and pyroxene are replaced by serpentine, magnetite, brucite, talc and carbonate minerals. Serpentinization reactions alter chemical, mechanical, magnetic, seismic, and hydraulic properties of the crust. To understand the complicated nature of serpentinization and the linkages between physical and chemical changes during the reactions, I performed flow-through laboratory experiments on cylindrically cored samples of ultramafic rocks. Each core had a well-mated through-going tensile fracture, to investigate evolution of fracture permeability during serpentinization. The samples were tested in a triaxial loading machine at an effective pressure of 30 MPa, and temperature of 260°C, simulating a depth of 2 km under hydrostatic conditions. Fracture permeability decreased by one to two orders of magnitude during the 200 to 340 hour experiments. Electron microprobe and SEM data indicated the formation of needle-shaped crystals of serpentine composition along the walls of the fracture, and chemical analyses of sampled pore fluids were consistent with dissolution of ferro-magnesian minerals. The rate of transformation of olivine to serpentine in a tensile fracture is calculated using the data on evolution of fracture permeability assuming the fracture permeability could be represented by parallel plates. Assuming the dissolution and precipitation reactions occur simultaneously; the rate of transformation at the beginning of the experiments was ~ 10-8-10-9 (mol/m2s) and decreased monotonically by about an order of magnitude towards the end of the experiment. Results show that dissolution and precipitation is the main mechanism contributing to the reduction in fracture aperture. The experimental results suggest that the fracture network in long-lived hydrothermal circulation systems may be sealed rapidly as a result of mineral precipitation, and generation of new permeability resulting from a combination of tectonic and crystallization-induced stresses may be required to maintain fluid circulation. Another set of flow through experiments were performed on intact samples of ultramafic rocks at room temperature and effective pressures of 10, 20 and 30 MPa to estimate the pressure dependency of intact permeability. Porosity and density measurements were also performed with the purpose of characterizing these properties of ultramafic rocks. The pressure dependency of the coefficient of matrix permeability of the ultramafic rock samples fell in the range of 0.05-0.14 MPa-1. Using porosity and permeability measurements, the ratio of interconnected porosity to total porosity was estimated to be small and the permeability of the samples was dominantly controlled by microcracks. Using the density and porosity measurements, the degree of alteration of samples was estimated. Samples with high density and pressure dependent permeability had a smaller degree of alteration than those with lower density and pressure dependency.
- Exploring the relationship between crustal permeability and hydrothermal venting at mid-ocean ridges using numerical modelsSingh, Shreya (Virginia Tech, 2015-06-16)Hydrothermal systems associated with oceanic spreading centers account for a quarter of Earth's total heat flux and one third of the heat flux through the ocean floor. Circulation of seawater through these systems alters both the crust and the circulating fluid, impacting global geochemical cycles. The warm vent fluids rich in nutrients support a wide variety of unique biological communities. Thus, understanding hydrothermal processes at oceanic spreading centers is important to provide insight into thermal and biogeochemical processes. In this dissertation I present the results of numerical modeling efforts for mid-ocean ridge hydrothermal systems. In the three manuscripts presented, permeability emerges as a key controlling factor for hydrothermal venting. In the first manuscript, I use 2-D numerical models to find that the distribution of permeability in the crust controls fluid velocity as well as the amount of mixing between hot hydrothermal fluids and cold seawater. This, in turn, effects the temperature and composition of fluids emerging on the surface. For the second manuscript, I construct single-pass 1-D models to show that a sudden increase in permeability caused due to magmatic or seismic events in the seafloor causes a sharp rise in the fluid output of the system. This, in conjunction with steep thermal gradients close to the surface, results in a rapid increase of venting temperatures. In the third manuscript, I develop a particle tracking model to study fluid trajectories in the subsurface. The results show that permeability distribution in the subsurface governs fluid paths and consequently, the residence time of fluids in the crust. Based on the work presented in this document, I conclude that permeability distribution, both local and field scale, exerts a major control on hydrothermal circulation in the subsurface and on the temperature and composition of venting fluids on the surface.
- Exploring two-phase hydrothermal circulation at a seafloor pressure of 25 MPa: Application for EPR 9°50′NHan, Liang (Virginia Tech, 2011-10-21)We present 2-D numerical simulations of two phase flow in seafloor hydrothermal systems using the finite control volume numerical scheme FISHES. The FISHES code solves the coupled non-linear equations for mass, momentum, energy, and salt conservation in a NaCl-H2O fluid to model the seafloor hydrothermal processes. These simulations use homogeneous box geometries at a fixed seafloor pressure of 25 MPa with constant bottom temperature boundary conditions that represent a sub-axial magma chamber to explore the effects of permeability, maximum bottom temperature and system depth on the evolution of vent fluid temperature and salinity, and heat output. We also study the temporal and spatial variability in hydrothermal circulation. The two-phase simulation results show that permeability plays an important role in plume structure and heat output of hydrothermal systems, but it has little effect on vent fluid temperature and salinity, given the same bottom temperature. For some permeability values, multiple plumes can vent at the seafloor above the simulated magma chamber. Temporal variability of vent fluid temperature and salinity and the complexity of phase separation suggest that pressure and temperature conditions at the top of the axial magma chamber cannot be easily inferred from vent fluid temperature and salinity alone. Vapor and brine derived fluids can vent at the seafloor simultaneously, even from neighboring locations that are fed by the same plume.
- Geochemistry of fluid-rock processesLamadrid De Aguinaco, Hector M. (Virginia Tech, 2016-06-14)When these fluids interact with the surrounding rocks, small aliquots of these fluids are trapped as imperfections in the crystal lattice and fractures of minerals. These microscopic features are called fluid and melt inclusions, and are one of the best tools available to probe, measure and determine the chemical and physical properties of crustal fluids. In the present study we examine new developments into our understanding of fluid-rock interactions using fluid and melt inclusion as tools to provide insights into the evolution of the Earth's crust from the deep continental crust to the surface. Chapter II "Raman spectroscopic characterization of H2O in CO2-rich fluid inclusions in granulite facies metamorphic rocks", is a brief review of the current understanding of granulite rocks and their formation, and a new development into our ability to characterize the composition of the fluids trapped as fluid inclusions in minerals in granulite facies rocks. Chapter III "Reassessment of the Raman CO2 densimeter", details new developments in the use of the Raman spectroscopy to characterize the density of CO2. In this chapter we describe briefly the Raman effect of CO2 and the density dependence of the Fermi diad using different Raman instruments, laser sources and gratings to understand the differences in the published data. Chapter IV "Serpentinization reaction rates measured in olivine micro-batch reactors" describes new insights into the serpentinization process by using olivine micro-reactors. The micro-reactor technique is a new experimental development that allows researchers to monitor the fluid chemistry as well as the mineral composition changes inside synthetic fluid inclusion.
- Hydrothermal Transport in the Panama Basin and in Brothers Volcano using Heat Flow, Scientific Deep Sea Drilling and Mathematical ModelsKolandaivelu, Kannikha Parameswari (Virginia Tech, 2019-02-15)Two-thirds of submarine volcanism in the Earth's ocean basins is manifested along mid-ocean ridges and the remaining one-third is revealed along intraoceanic arcs and seamounts. Hydrothermal systems and the circulation patterns associated with these volcanic settings remove heat from the solid Earth into the deep ocean. Hydrothermal circulation continues to remove and redistribute heat in the crust as it ages. The heat and mass fluxes added to the deep ocean influence mixing in the abyssal ocean thereby affecting global thermohaline circulation. In addition to removing heat, hydrothermal processes extract chemical components from the oceanic and carry it to the surface of the ocean floor, while also removing certain elements from seawater. The resulting geochemical cycling has ramifications on the localized mineral deposits and also the biota that utilize these chemical fluxes as nutrients. In this dissertation, I analyze observed conductive heat flow measurements in the Panama Basin and borehole thermal measurements in Brothers Volcano and use mathematical models to estimate advective heat and mass fluxes, and crustal permeability. In the first manuscript, I use a well-mixed aquifer model to explain the heat transport in a sediment pond in the inactive part of the Ecuador Fracture Zone. This model yields mass fluxes and permeabilities similar to estimates at young upper oceanic crust suggesting vigorous convection beneath the sediment layer. In the second manuscript, I analyze the conductive heat flow measurements made in oceanic between 1.5 and 5.7 Ma on the southern flank of the Costa Rica Rift. These data show a mean conductive heat deficit of 70%, and this deficit is explained by various hydrothermal advective transport mechanisms, including outcrop to outcrop circulation, transport through faults, and redistribution of heat by flow of hydrothermal fluids in the basement. In the third manuscript, I analyze the borehole temperature logs for two sites representative of recharge and discharge areas of hydrothermal systems in the Brothers Volcano. I develop upflow and downflow models for fluids in the borehole and formation resulting in estimated of flow rates and permeabilities. All three independent research works are connected by the common thread of utilizing relatively simple mathematical concepts to get new insights into hydrothermal processes in oceanic crust.
- Implications of Permeability Uncertainty During Three-phase CO2 Flow in a Basalt Fracture NetworkGierzynski, Alec Owen (Virginia Tech, 2016-12-15)Recent studies suggest that continental flood basalts may be suitable for geologic carbon sequestration due to fluid-rock reactions that mineralize injected CO₂ on relatively short time-scales. Flood basalts also possess a permeability structure favorable for injection, with alternating high-permeability (flow margin) and low-permeability (flow interior) layers. However, little information exists on the behavior of CO₂ as it leaks through fractures characteristic of the flow interior, particularly at conditions near the critical point for CO₂. In this study, a two-dimensional 5 × 5 m model of a fracture network is built based on high-resolution LiDAR scans of a Columbia River Basalt flow interior taken near Starbuck, WA. Three-phase CO₂ flow is simulated using TOUGH3 (beta) with equation of state ECO2M for 10 years simulation time. Initial conditions comprise a hydrostatic pressure profile corresponding to 750-755 m below ground surface and a constant temperature of 32° C. Under these conditions, the critical point for CO₂ occurs 1.5 meters above the bottom of the domain. Matrix permeability is assumed to be constant, based on literature values for the Columbia River Basalt. Fracture permeability is assigned based on a lognormal distribution of random values with mean and standard deviation based on measured fracture aperture values and in situ permeability values from literature. In order to account for fracture permeability uncertainty, CO₂ leakage is simulated in 50 equally probable realizations of the same fracture network with spatially random permeability constrained by the lognormal permeability distribution. Results suggest that fracture permeability uncertainty has some effect on the distribution of CO₂ within the fractures, but network geometry is the primary control in determining flow paths. Fracture permeability uncertainty has a larger influence on fluid pressure, and can affect the location of the critical point within ~1.5 m. Uncertainty in fluid pressure was found to be highest along major flow paths below channel constrictions, indicating permeability at a few key points can have a large influence on fluid pressure distribution.
- Modelling and analytical studies of magmatic-hydrothermal processesKlyukin, Yury Igorevich (Virginia Tech, 2017-12-08)Hydrothermal processes play a major role in transporting mass and energy in Earth’s crust. These processes rely on hydrothermal fluid, which is dissolving, transporting and precipitating minerals and distribute heat. The composition of the hydrothermal fluid is specific for various geological settings, but in most cases it can be approximated by H₂O-NaCl-CO₂ fluid composition. The flow of hydrothermal fluid is controlled by differences in temperature, pressure and/or density of the fluid and hydraulic conductivity of the rock. In my work, I was focused on modeling of the hydrothermal fluid properties and experimental characterization of fluid that formed emerald deposit in North Carolina, USA. The dissertation based on the result of three separate projects. The first project has been dedicated to characterization of the H₂O-NaCl hydrothermal fluid ability to transport mass and energy. This ability of the fluid is defined by a change in fluid density and enthalpy in response to changing pressure or temperature. In this project we quantified the derivatives of mass, enthalpy and SiO₂ solubility in wide range of pressure, temperature and composition (PTx) of H₂O-NaCl fluid. Our study indicated that the PT region in which fluid is most efficiently can transport mass and energy, located in the critical region near liquid-vapor phase boundary and the sensitivity to changing pressure-temperature conditions decrease with increasing salinity. In second project we developed the revised H₂O-NaCl viscosity model. Revised model to calculate the viscosity of H₂O-NaCl reproduces experimental data with ±10% precision in PTx range where experimental data available and follows expected trends outside of the range. This model is valid over the temperature range from the H₂O solidus (~0 °C) to ~1,000 °C, from ~0.1 MPa to ≤500 MPa, and for salinities from 0-100 wt.% NaCl. The third project has been focused on the characterization of formation conditions of the emerald at North American Emerald Mine, Hiddenite, North Carolina, USA. The emerald formation conditions defined as 120-220 MPa, 450-625 °C using stable isotope, Raman spectrometry, and fluid inclusion analysis. Hydrothermal fluid had a composition of CO2-H2O±CH4, which indicates mildly reducing environment of emerald growth.
- Numerical Modeling of the Hydrothermal System at East Pacific Rise (EPR) 9 Degrees 50' N Including Anhydrite PrecipitationKolandaivelu, Kannikha Parameswari (Virginia Tech, 2015-07-09)Seafloor hydrothermal systems have been intensively studied for the past few decades; however, the location of recharge zones and details of fluid circulation patterns are still largely uncertain. To better understand the effects of anhydrite precipitation on hydrothermal flow paths, we conduct 2-D numerical simulations of hydrothermal circulation at a mid-ocean ridge using a NaCl-H2O numerical code. The simulations focus on East Pacific Rise hydrothermal system at 950N due to availability of key observational data to constrain the models. Seismicity data that is available suggests that fluid flow is primarily along axis and that recharge is focused into a small zone near a 4th order discontinuity in the ridge axis. Simulations are carried out in an open-top square box 1500 m on a side maintained at a surface pressure of 25 MPa, and nominal seawater temperature of 10 C. The sides of the box are assumed to be impermeable and insulated. A constant temperature distribution is maintained along the bottom of the box consisting of a 1000 m long central-heated region maintained at 450 C to represent the axial magma chamber and ensure P-T conditions for phase separation; a linearly decreasing temperature profile from 450 to 300 C is maintained along the 250 m long segments adjacent to the heated region to delineate the recharge zone. We constructed a homogeneous model with a uniform cell size of 25 m with a permeability of 10-13 m2 and a similar model with a 200 m thick layer 2A region with a permeability of 10-12 m2. For the homogeneous model the simulations were run for 100 years to approximate steady state conditions and the model with layer 2A was run for 50 years. Assuming that anhydrite precipitation resulted from the decrease in solubility with increasing temperature as downwelling fluid gets heated, the rate of porosity decrease and sealing time was calculated at 50 and 100 years. The results showed that sealing occurred most rapidly at the bottom of the recharge areas near the base of the high-temperature plumes, where complete sealing occurred after ~55-625 years for an initial porosity of 0.1. The simulations also suggested that sealing would occur more slowly at the margins of the ascending plumes, with times ranging between ~ 80 and 5000 years. The sealing times in the deep recharge zone determined in these simulations are considerably greater than estimated from 1D analytical calculations, suggesting that with a 2D model, focused recharge at the EPR 950N site may occur, at least on a decadal time scale. More detailed analyses are needed to determine whether such focused recharge can be maintained for longer times.
- A Parameterized Approach to Partitioning Between Focused and Diffuse Heat Output and Modeling Hydrothermal Recharge at The East Pacific Rise 9°50´NFarough, Aida (Virginia Tech, 2011-12-02)Ever since the discovery of seafloor hydrothermal systems at mid ocean ridges, scientists have been trying to understand the complex dynamic processes by which thermal energy is transported advectively by chemically reactive aqueous fluids from Earth's interior to the surface. Hydrothermal systems are generally assumed to consist of a heat source and a fluid circulation system. Understanding the interconnected physical, chemical, biological, and geological processes at oceanic spreading centers is important because these processes affect the global energy and biogeochemical budgets of the Earth system. Despite two decades of focused study of hydrothermal systems, several key questions remain concerning the behavior and evolution of hydrothermal vent systems. Among these are: (a) the partitioning of heat transport between focused and diffuse flow, and (b) the spatial extent and distribution of hydrothermal recharge. These are the main topics of investigation in this thesis. To address these issues, I first use a single-pass modeling approach using a variety of observational data in a simple parametric scale analysis of a hydrothermal vent field to determine fundamental parameters associated with the circulation and magmatic heat transfer for a number of seafloor hydrothermal systems for which the constraining data are available. To investigate the partitioning of heat flux between focused high temperature and diffuse flow I extend the one-limb single pass model to incorporate two single-pass limbs to represent deep and shallow circulation pathways. As a result, I find that 90% of the heat output is from high temperature fluid circulating in the deep limb even though much of the heat loss appears at the seafloor as low-temperature diffuse flow. Next, I use the parametric description of hydrothermal circulation to investigate hydrothermal recharge at the East Pacific Rise 9°50′ N hydrothermal site. Using a 1-D model of recharge through an area of 10⁵ m² elucidated by microseismicity in the oceanic crust I find that anhydrite precipitation is likely to result in rapid sealing of pore space in the recharge zone. This would lead to rapid decay of hydrothermal venting, which is contrary to observations. Then I consider two-dimensional numerical models of hydrothermal circulation in a porous box heated from below. The preliminary results of these models suggests that the anhydrite precipitation zone will be more diffuse, but additional work is needed to test whether anhydrite precipitation will seal the pore space.
- A Quantitative Analysis of a Non-Eruptive Volcanic Event: Mt. Spurr, Alaska, 2002-2006Mercier, David (Virginia Tech, 2014-03-04)Mt. Spurr is a volcano in proximity to Anchorage, Alaska and major airline routes making an eruption or episode of unrest potentially hazardous. Between 2004 and 2006, Mt. Spurr underwent such an episode of unrest involving increased seismic activity, CO2 emissions, ice melting, and debris flows, which was likely forecasted by the increased seismicity of Oct 2002. The timeline of events provide data to construct a model analyzing the thermal energy release and constraining subsurface magmatic and hydrothermal processes during the period of unrest. The results show that the ice cauldron formation and the increase of meltwater temperature could not have been caused by the observed CO2 release alone and suggest that enhanced hydrothermal heat transfer related to increased CO2 output could provide the thermal power necessary to drive the melting event. Scaling hydrothermal convection in terms of its Rayleigh number and using boundary layer analysis suggests that the mean permeability of the volcanic edifice prior to the unrest event was ~10-14 m2. CO2 release, most likely related to mechanical fracturing of the edifice by over-pressurized fluids at depth and signaled by increased seismicity likely enhanced the hydrothermal Rayleigh number and heat output by a combination of heating and increased permeability.
- Quartz precipitation and fluid inclusion characteristics in sub-seafloor hydrothermal systems associated with volcanogenic massive sulfide depositsSteele-MacInnis, Matthew; Han, Liang; Lowell, Robert P.; Rimstidt, J. Donald; Bodnar, Robert J. (De Gruyter, 2012-05-13)Results of a numerical modeling study of quartz dissolution and precipitation in a sub-seafloor hydrothermal system have been used to predict where in the system quartz could be deposited and potentially trap fluid inclusions. The spatial distribution of zones of quartz dissolution and precipitation is complex, owing to the fact that quartz solubility depends on many inter-related factors, including temperature, fluid salinity and fluid immiscibility, and is further complicated by the fact that quartz exhibits both prograde and retrograde solubility behavior, depending on the fluid temperature and salinity. Using the PVTX properties of H2O-NaCl, the petrographic and microthermometric properties of fluid inclusions trapped at various locations within the hydrothermal system have been predicted. Vapor-rich inclusions are trapped as a result of the retrograde temperature-dependence of quartz solubility as the convecting fluid is heated in the vicinity of the magmatic heat source. Coexisting liquid-rich and vapor-rich inclusions are also trapped in this region when quartz precipitates as a result of fluid immiscibility that lowers the overall bulk quartz solubility in the system. Fluid inclusions trapped in the shallow subsurface near the seafloor vents and in the underlying stockwork are liquid-rich with homogenization temperatures of 200–400°C and salinities close to that of seawater. Volcanogenic massive sulfide (VMS) deposits represent the uplifted and partially eroded remnants of fossil submarine hydrothermal systems, and the relationship between fluid-inclusion properties and location within the hydrothermal system described here can be used in exploration for VMS deposits to infer the direction towards potential massive sulfide ore.
- The response of two-phase hydrothermal systems to changing magmatic heat input at mid-ocean ridgesChoi, Jaewoon (Virginia Tech, 2013-04-24)Hydrothermal processes at oceanic spreading centers are largely influenced by changing magmatic heat input. I use the FISHES code to investigate the evolution of surface temperature and salinity as a function of time-varying heat flux at the base of a two-phase, vapor-brine hydrothermal system. I consider a two-dimensional rectangular box that is 1.5 km deep and 4 km long with homogeneous permeability. Impermeable, insulated conditions are imposed on the left and right hand boundaries. To simulate time-varying heat flux from a sub-axial magma chamber of 500 m long half-width, I consider a variety of basal boundary conditions: (1) a constant heat flux with an value of 130 W/m2; (2) a sinusoidal heat flux with a period of 6 years and an amplitude ranging between 100 and 50 W/m2; (3) step, random, and exponential heat fluxes ranging between 200 and 15 W/m2; and (4) an analytical function of temporally decaying heat flux resulting from a simulated cooling, crystallizing magmatic sill. As a result of the investigation I find: (1) changes in bottom temperature and salinity closely follow the temporal variations in magmatic heat inputs; (2) the surface temperature response is severely damped and high frequency variations in heat flow are not detected; (3) in regions where phase separation of vapor and brine occurs, surface salinity variations may be recorded in response to changing conditions at depth, but these are smaller in amplitude.
- Seismic imaging and thermal modeling of active continental rifting processes in the Salton Trough, Southern CaliforniaHan, Liang (Virginia Tech, 2016-03-24)Continental rifting ultimately creates a deep accommodation space for sediment. When a major river flows into a late-stage rift, thick deltaic sediment can change the thermal regime and alter the mechanisms of extension and continental breakup. The Salton Trough, the northernmost rift segment of the Gulf of California plate boundary, has experienced the same extension as the rest of the Gulf, but is filled to sea level by sediment from the Colorado River. Unlike the southern Gulf, seafloor spreading has not initiated. Instead, seismicity, high heat flow, and minor volcanoes attest to ongoing rifting of thin, transitional crust. Recently acquired controlled-source seismic refraction and wide-angle reflection data in the Salton Trough provide constraints upon crustal architecture and active rift processes. The crust in the central Salton Trough is only 17-18 km thick, with a strongly layered but relatively one-dimensional structure for ~100 km in the direction of plate motion. The upper crust includes 2-3 km of Colorado River sediment. The basement below the sediment is interpreted to be similar sediment metamorphosed by the high heat flow and geothermal activity. Meta-sedimentary rock extends to at least 7-8 km depth. A 4-5 km thick layer in the middle crust is either additional meta-sedimentary rock or stretched pre-existing continental crust. The lowermost 4-5 km of the crust is rift-related mafic magmatic material underplated from partial melting in the hot upper mantle. North American lithosphere in the Salton Trough has been almost or completely rifted apart. The gap has been filled by ~100 km of new transitional crust created by magmatism from below and sedimentation from above. These processes create strong lithologic, thermal, and rheologic layering. Brittle extension occurs within new meta-sedimentary rock. The lower crust, in comparison, stretches by ductile flow and magmatism is not localized. This seismic interpretation is also supported by 1D thermal and rheological modeling. In this passive rift driven by far-field extensional stresses, rapid sedimentation keeps the crust thick and ductile, which delays final breakup of the crust and the initiation of seafloor spreading.