Browsing by Author "Lu, Yang"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- Atomistic Characterization and Modeling of the Deformation and Failure Properties of Asphalt-Aggregate InterfaceLu, Yang (Virginia Tech, 2010-04-20)This dissertation is dedicated to develop models and methods to bridge atomistic and continuum scales of deformation processes in asphalt-aggregate interfacial composite materials systems. The deformation and failure behaviors, e.g. nanoscale strength, deformation, stiffness, and adhesion/cohesion at asphalt-aggregate interfaces are all evaluated by means of atomistic simulations. The atomistic modeling approach is employed to simulate mechanical properties, which is connected by their common dependence on the nanoscale bonding and their sensitive dependences on mechanics and moisture sensitivity. Specifically, CVFF-aug forcefield is employed in the atomistic calculations to study the fundamental failure processes that appear at the interface as a result of a mechanical deformation. There are five primary aspects to this dissertation. First, the multiscale features of asphalt concrete materials are characterized by using nanoscale characterization & fabrication devices, e.g. High Resolution Optical Microscope (HROM), Environmental Scanning Electron Microscope (ESEM), Transmission Electron Microscope (TEM), Focused Ion Beam (FIB), and Atomistic Force Microscope (AFM). Second, based on the multiscale devices characterization of the interfaces, a 2-layer atomistic bitumen-rock interface structure is constructed. Interface structure evolution under uniaxial tension is performed with various deformation rates. Comparison is made between both theoretical and experimental characterizations of interface configuration. Molecular dynamics (MD) simulations are used to investigate potential relationships between interface structure and morphology. Influences of deformation rate and temperature factors are discussed in terms of interface region stress-strain relation and loading time duration. Third, molecular dynamics simulations are also performed to provide a characterization of atomic scale mechanical behaviors for a 3-layer confined shear structure which leads to interfacial shear failure. In addition, atomistic static simulation approach is employed to calculate a couple of mineral crystals' elastic constants. Furthermore, molecular dynamics simulations are also used to predict the static, thermodynamic, and mechanical properties of three asphalt molecular models. Fourth, the high performance parallel computing technology is extensively employed throughout this dissertation. In addition to use the large-scale MD program, LAMMPS, the author developed a high performance parallel distributive computing program, MPI_multistress, to implement the multiscale understanding/predicting of materials mechanical behaviors. Finally, this research also focuses on the evaluation of the susceptibility of aggregates and asphalts to moisture damage through understanding the nano-mechanisms that influence adhesive bond between aggregates and asphalt, as well as the cohesive strength and moisture susceptibility of the specific asphalt-aggregate interfaces. Surface energy theory and pull-out simulation are used to compute the adhesive bond strength between the aggregates and asphalt, as well as the cohesive bond strength within the binder. In general, this dissertation has focused on the development of nanoscale modeling methods to assess asphalt-aggregate interfacial atomistic deformation and failure behaviors, as well as moisture effects on asphalt mixture strength. Simulation results provide valuable insights into mechanistic details of nanoscale interactions, particularly under conditions of various deformation rates and different temperatures. The results obtained show that a reasonable agreement between the theoretical and pavement industry observations is satisfactory. We conclude that the theoretical calculations presented here are useful in asphalt concrete industry for predicting the mechanical properties of asphalt-aggregate interfaces, which are difficult to obtain experimentally because of their small size.
- Cardiac computed tomography methods and systems using fast exact/quasi-exact filtered back projection algorithms(United States Patent and Trademark Office, 2013-07-09)The present invention provides systems, methods, and devices for improved computed tomography (CT). More specifically, the present invention includes methods for improved cone-beam computed tomography (CBCT) resolution using improved filtered back projection (FBP) algorithms, which can be used for cardiac tomography and across other tomographic modalities. Embodiments provide methods, systems, and devices for reconstructing an image from projection data provided by a computed tomography scanner using the algorithms disclosed herein to generate an image with improved temporal resolution.
- Compressed Sensing Inspired Image Reconstruction from Overlapped ProjectionsYang, Lin; Lu, Yang; Wang, Ge (Hindawi, 2010-06-22)The key idea discussed in this paper is to reconstruct an image from overlapped projections so that the data acquisition process can be shortened while the image quality remains essentially uncompromised. To perform image reconstruction from overlapped projections, the conventional reconstruction approach (e.g., filtered backprojection (FBP) algorithms) cannot be directly used because of two problems. First, overlapped projections represent an imaging system in terms of summed exponentials, which cannot be transformed into a linear form. Second, the overlapped measurement carries less information than the traditional line integrals. To meet these challenges, we propose a compressive sensing-(CS-) based iterative algorithm for reconstruction from overlapped data. This algorithm starts with a good initial guess, relies on adaptive linearization, and minimizes the total variation (TV). Then, we demonstrated the feasibility of this algorithm in numerical tests.
- Extended interior methods and systems for spectral, optical, and photoacoustic imaging(United States Patent and Trademark Office, 2014-10-14)The present invention relates to the field of medical imaging. More particularly, embodiments of the invention relate to methods, systems, and devices for imaging, including for tomography-based applications. Embodiments of the invention include, for example, a computed tomography based imaging system comprising: (a) at least one wide-beam gray-scale imaging chain capable of performing a global scan of an object and acquiring projection data relating to the object; (b) at least one narrow-beam true-color imaging chain capable of performing a spectral interior scan of a region of interest (ROI) of and acquiring projection data relating to the object; (c) a processing module operably configured for: (1) receiving the projection data; (2) reconstructing the ROI into an image by analyzing the data with a color interior tomography algorithm, aided by an individualized gray-scale reconstruction of an entire field of view (FOV), including the ROI; and (d) a processor for executing the processing module. The extended interior methods and systems for spectral, optical, and photoacoustic imaging presented in this application can lead to better medical diagnoses by providing images with higher resolution or quality, and can lead to safer procedures by providing systems capable of reducing a patient's exposure time to, and thus quantity of, potentially harmful x-rays. Embodiments of the invention also provide tools for real-time tomography-based analyses.
- Investigating the Pavement Vibration Response for Roadway Service Condition EvaluationYe, Zhoujing; Lu, Yang; Wang, Linbing (Hindawi, 2018-07-08)Dynamic response of pavement provides service condition information and helps with damage prediction, while limited research is available with the simulation of pavement vibration response for evaluating roadway service condition. This paper presents a numerical model for the analysis of the pavement vibration due to the dynamic load created by a passing vehicle. A quarter vehicle model was used for the determination of the vehicle moving load. Both random and spatial characteristics of the load were considered. The random nonuniform moving load was then introduced in a 3D finite element model for the determination of the traffic-induced pavement vibration. The validated numerical model was used to assess the effects of dynamic load, material properties, and pavement structures on pavement vibration response. Numerical analyses showed that the vibration modes changed considerably for the different roadway service conditions. The vibration signals reflect the level of road roughness, the stiffness of the pavement materials, and the integrity of pavement structure. The acceleration extrema, the time-domain signal waveform, the frequency distribution, and the sum of squares of Fourier amplitude can be potential indexes for evaluating roadway service condition. This provides recommendations for the application of pavement vibration response in early-warning and timely maintenance of road.
- Portable Image Analysis System for Characterizing Aggregate MorphologyWang, Linbing; Lane, D. Stephen; Lu, Yang; Druta, Cristian (Virginia Center for Transportation Innovation and Research, 2008-02-01)In the last decade, the application of image-based evaluation of particle shape, angularity and texture has been widely researched to characterize aggregate morphology. These efforts have been driven by the knowledge that the morphologic characteristics affect the properties and ultimate performance of aggregate mixtures in hot-mixed asphalt, hydraulic cement concrete and bound and unbound pavement layers, yet the lack of rapid, objective, and quantitative methods for assessment have inhibited their application in the engineering process. Developed systems for computer-based imaging and image analysis can cost up to $30-40,000 and are usually not portable to the field. However, recent advances in technology have produced pocket computers having as much processing power as was available in some desktop computers. This project takes advantage of these advances to develop an inexpensive portable image analysis system for characterizing aggregate morphology. The system was developed with an integral pocket computer-high resolution camera but can also use individual components consisting of a digital camera and lap- or desk-top computer. Digital images of aggregate particles are captured with the camera. These images are analyzed within the Matlab software program environment with a macro developed and written for this project that uses Fast Fourier Transform to characterize the particle morphology with respect to three parameters: shape, angularity and texture, based on the particle perimeter (outline or edge). By analyzing a number of particles from a source, it can be characterized with respect to these three parameters. Following development of the analysis program, 10 coarse aggregates from various Virginia sources were analyzed. Particles of each aggregate were randomly chosen so that each group contained the various shapes and textures representative of the source. Three images of each particle were obtained at distances of 2, 3, and 10 in to evaluate the resolution needed for adequate analysis. The reliability of the image processing was assessed by statistically analyzing the shape, angularity, and texture values to determine how the threshold parameter affects the particle edge acquisition. Asymptotic analysis was performed to determine the number of images needed to obtain a statistically stable value for each aggregate parameter. It was determined that images acquired at close range (2 or 3 in) were needed to provide sufficient resolution to adequately characterize the aggregate. It was also found that statistically valid values for aggregate shape, angularity, and texture can be obtained from fifteen particle images of random orientation. It can be concluded that the system can be successfully used to characterize coarse aggregate morphology. It is recommended that the Virginia Department of Transportation's Materials Division begin collecting images of aggregates used statewide and collaborate with the VTRC to perform the characterizations and build the database of aggregate morphologic characteristics. This information, coupled with performance testing of the materials, will provide the basis for incorporating the characterization parameters into specifications and guide material usage in the future.