Browsing by Author "Lu, Zhaokuan"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Application of the Spectral Element Method in a Surface Ship Far-Field UNDEX ProblemLu, Zhaokuan; Brown, Alan J. (Hindawi, 2019-07-25)The prediction of surface ship response to a far-field underwater explosion (UNDEX) requires the simulation of shock wave propagation in the fluid, cavitation, fluid-structure interaction, and structural response. Effective approaches to model the fluid include cavitating acoustic finite element (CAFE) and cavitating acoustic spectral element (CASE) methods. Although the spectral element method offers the potential for greater accuracy at lower computational cost, it also generates more spurious oscillations around discontinuities which are difficult to avoid in shock-related problems. Thus, the advantage of CASE remains unproven. In this paper, we present a 3D-partitioned FSI framework and investigate the application of CAFE and CASE to a surface ship early-time far-field UNDEX problem to determine which method has the best computational efficiency for this problem. We also associate the accuracy of the structural response with the modeling of cavitation distribution. A further contribution of this work is the examination of different nonmatching mesh information exchange schemes to demonstrate how they affect the structural response and improve the CAFE/CASE methodologies.
- Computationally-effective Modeling of Far-field Underwater Explosion for Early-stage Surface Ship DesignLu, Zhaokuan (Virginia Tech, 2020-03-23)The vulnerability of a ship to the impact of underwater explosions (UNDEX) and how to incorporate this factor into early-stage ship design is an important aspect in the ship survivability study. In this dissertation, attention is focused on the cost-efficient simulation of the ship response to a far-field UNDEX which involves fluid shock waves, cavitation, and fluid-structural interaction. Traditional fluid numerical simulation approaches using the Finite Element Method to track wave propagation and cavitation requires a high-level of mesh refinement to prevent numerical dispersion from discontinuities. Computation also becomes quite expensive for full ship-related problems due to the large fluid domain necessary to envelop the ship. The burden is aggravated by the need to generate a fluid mesh around the irregular ship hull geometry, which typically requires significant manual intervention. To accelerate the design process and enable the consideration of far-field UNDEX vulnerability, several contributions are made in this dissertation to make the simulation more efficient. First, a Cavitating Acoustic Spectral Element approach which has shown computational advantages in UNDEX problems, but not systematically assessed in total ship application, is used to model the fluid. The use of spectral elements shows greater structural response accuracy and lower computational cost than the traditional FEM. Second, a novel fully automatic all-hexahedral mesh generation scheme is applied to generate the fluid mesh. Along with the spectral element, the all-hex mesh shows greater accuracy than the all-tetrahedral finite element mesh which is typically used. This new meshing approach significantly saves time for mesh generation and allows the spectral element, which is confined to the hexahedral element, to be applied in practical ship problems. A further contribution of this dissertation is the development of a surrogate non-numerical approach to predict structural peak responses based on the shock factor concept. The regression analysis reveals a reasonably strong linear relationship between the structural peak response and the shock factor. The shock factor can be conveniently employed in the design aspects where the peak response is sufficient, using much less computational resources than numerical solvers.
- Coupling with the Embedded Boundary Method in a Runge-Kutta Discontinuous-Galerkin Direct Ghost-Fluid Method (RKDG-DGFM) Framework for Fluid-Structure Interaction Simulations of Underwater ExplosionsSi, Nan; Lu, Zhaokuan; Brown, Alan J. (MDPI, 2021-12-03)Solution of near-field underwater explosion (UNDEX) problems frequently require the modeling of two-way coupled fluid-structure interaction (FSI). This paper describes the addition of an embedded boundary method to an UNDEX modeling framework for multiphase, compressible and inviscid fluid using the combined algorithms of Runge-Kutta, discontinuous-Galerkin, level-set and direct ghost-fluid methods. A computational fluid dynamics (CFD) solver based on these algorithms has been developed as described in previous work. A fluid-structure coupling approach was required to perform FSI simulation interfacing with an external structural mechanics solver. Large structural deformation and possible rupture and cracking characterize the FSI phenomenon in an UNDEX, so the embedded boundary method (EBM) is more appealing for this application in comparison to dynamic mesh methods such as the arbitrary Lagrangian-Eulerian (ALE) method to enable the fluid-structure coupling algorithm in the fluid. Its limitation requiring a closed interface that is fully submerged in the fluid domain is relaxed by an adjustment described in this paper so that its applicability is extended. Two methods of implementing the fluid-structure wall boundary condition are also compared. The first solves a local 1D fluid-structure Riemann problem at each intersecting point between the wetted elements and fluid mesh. In this method, iterations are required when the Tait equation of state is utilized. A second method that does not require the Riemann solution and iterations is also implemented and the results are compared.