Browsing by Author "Ludwick, Dalton C."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Development of behaviorally based monitoring and biosurveillance tools for the invasive spotted lanternfly (Hemiptera: Fulgoridae)Nixon, Laura J.; Leach, Heather; Barnes, Caitlin; Urban, Julie; Kirkpatrick, Danielle M.; Ludwick, Dalton C.; Short, Brent; Pfeiffer, Douglas G.; Leskey, Tracy C. (Oxford University Press, 2020-10-01)The spotted lanternfly, Lycorma delicatula White, is an invasive planthopper (Hemiptera: Fulgoridae) that was first detected in the United States in Berks County, PA, in 2014, and has since spread in the mid-Atlantic region. This phloem-feeding pest has a broad host range, including economically important crops such as grape where their feeding causes dieback of infested plants. Monitoring the presence and abundance of L. delicatula is of utmost importance to develop pest management approaches. Current monitoring practices include sticky bands deployed on tree trunks, sometimes paired with commercially available methyl salicylate lures. A drawback associated with sticky bands is the high numbers of nontarget captures. Here, we developed traps for L. delicatula based on a circle trap originally designed for weevils. These traps are comprised of a screen funnel that wraps around the trunk of a tree and guides individuals walking up the trunk into a collection device. In 2018 and 2019, we compared circle trap designs with sticky bands in Pennsylvania and Virginia. In both years, circle trap designs yielded captures that were equivalent to or exceeded captures of L. delicatula on sticky bands. Nontarget captures were significantly lower for circle traps compared with sticky bands. Presence of a methyl salicylate lure in association with traps deployed on host trees or vertical tree-mimicking posts did not increase L. delicatula captures compared with unbaited traps. Circle traps, modified using vinyl screen and a larger collection device, present an alternative to the current approach with reduced nontarget capture for monitoring L. delicatula.
- Extended Sentinel Monitoring of Helicoverpa zea Resistance to Cry and Vip3Aa Toxins in Bt Sweet Corn: Assessing Changes in Phenotypic and Allele Frequencies of ResistanceDively, Galen P.; Kuhar, Tom P.; Taylor, Sally V.; Doughty, Helene; Holmstrom, Kristian; Gilrein, Daniel O.; Nault, Brian A.; Ingerson-Mahar, Joseph; Huseth, Anders; Reisig, Dominic; Fleischer, Shelby; Owens, David; Tilmon, Kelley; Reay-Jones, Francis; Porter, Pat; Smith, Jocelyn; Saguez, Julien; Wells, Jason; Congdon, Caitlin; Byker, Holly; Jensen, Bryan; DiFonzo, Chris; Hutchison, William D.; Burkness, Eric; Wright, Robert; Crossley, Michael; Darby, Heather; Bilbo, Tom; Seiter, Nicholas; Krupke, Christian; Abel, Craig; Coates, Brad S.; McManus, Bradley; Fuller, Billy; Bradshaw, Jeffrey; Peterson, Julie A.; Buntin, David; Paula-Moraes, Silvana; Kesheimer, Katelyn; Crow, Whitney; Gore, Jeffrey; Huang, Fangneng; Ludwick, Dalton C.; Raudenbush, Amy; Jimenez, Sebastian; Carrière, Yves; Elkner, Timothy; Hamby, Kelly (MDPI, 2023-06-25)Transgenic corn and cotton that produce Cry and Vip3Aa toxins derived from Bacillus thuringiensis (Bt) are widely planted in the United States to control lepidopteran pests. The sustainability of these Bt crops is threatened because the corn earworm/bollworm, Helicoverpa zea (Boddie), is evolving a resistance to these toxins. Using Bt sweet corn as a sentinel plant to monitor the evolution of resistance, collaborators established 146 trials in twenty-five states and five Canadian provinces during 2020–2022. The study evaluated overall changes in the phenotypic frequency of resistance (the ratio of larval densities in Bt ears relative to densities in non-Bt ears) in H. zea populations and the range of resistance allele frequencies for Cry1Ab and Vip3Aa. The results revealed a widespread resistance to Cry1Ab, Cry2Ab2, and Cry1A.105 Cry toxins, with higher numbers of larvae surviving in Bt ears than in non-Bt ears at many trial locations. Depending on assumptions about the inheritance of resistance, allele frequencies for Cry1Ab ranged from 0.465 (dominant resistance) to 0.995 (recessive resistance). Although Vip3Aa provided high control efficacy against H. zea, the results show a notable increase in ear damage and a number of surviving older larvae, particularly at southern locations. Assuming recessive resistance, the estimated resistance allele frequencies for Vip3Aa ranged from 0.115 in the Gulf states to 0.032 at more northern locations. These findings indicate that better resistance management practices are urgently needed to sustain efficacy the of corn and cotton that produce Vip3Aa.