Browsing by Author "Lyu, Pengcheng"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Chromatin profiling reveals TFAP4 as a critical transcriptional regulator of bovine satellite cell differentiationLyu, Pengcheng; Jiang, Honglin (2024-03-12)Background: Satellite cells are myogenic precursor cells in adult skeletal muscle and play a crucial role in skeletal muscle regeneration, maintenance, and growth. Like embryonic myoblasts, satellite cells have the ability to proliferate, differentiate, and fuse to form multinucleated myofibers. In this study, we aimed to identify additional transcription factors that control gene expression during bovine satellite cell proliferation and differentiation. Results: Using chromatin immunoprecipitation followed by sequencing, we identified 56,973 and 54,470 genomic regions marked with both the histone modifications H3K4me1 and H3K27ac, which were considered active enhancers, and 50,956 and 59,174 genomic regions marked with H3K27me3, which were considered repressed enhancers, in proliferating and differentiating bovine satellite cells, respectively. In addition, we identified 1,216 and 1,171 super-enhancers in proliferating and differentiating bovine satellite cells, respectively. Analyzing these enhancers showed that in proliferating bovine satellite cells, active enhancers were associated with genes stimulating cell proliferation or inhibiting myoblast differentiation whereas repressed enhancers were associated with genes essential for myoblast differentiation, and that in differentiating satellite cells, active enhancers were associated with genes essential for myoblast differentiation or muscle contraction whereas repressed enhancers were associated with genes stimulating cell proliferation or inhibiting myoblast differentiation. Active enhancers in proliferating bovine satellite cells were enriched with binding sites for many transcription factors such as MYF5 and the AP-1 family transcription factors; active enhancers in differentiating bovine satellite cells were enriched with binding sites for many transcription factors such as MYOG and TFAP4; and repressed enhancers in both proliferating and differentiating bovine satellite cells were enriched with binding sites for NF-kB, ZEB-1, and several other transcription factors. The role of TFAP4 in satellite cell or myoblast differentiation was previously unknown, and through gene knockdown and overexpression, we experimentally validated a critical role for TFAP4 in the differentiation and fusion of bovine satellite cells into myofibers. Conclusions: Satellite cell proliferation and differentiation are controlled by many transcription factors such as AP-1, TFAP4, NF-kB, and ZEB-1 whose roles in these processes were previously unknown in addition to those transcription factors such as MYF5 and MYOG whose roles in these processes are widely known.
- Genome-wide identification of enhancers and transcription factors regulating the myogenic differentiation of bovine satellite cellsLyu, Pengcheng; Settlage, Robert E.; Jiang, Honglin (2021-12-16)Background Satellite cells are the myogenic precursor cells in adult skeletal muscle. The objective of this study was to identify enhancers and transcription factors that regulate gene expression during the differentiation of bovine satellite cells into myotubes. Results Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) was performed to identify genomic regions where lysine 27 of H3 histone is acetylated (H3K27ac), i.e., active enhancers, from bovine satellite cells before and during differentiation into myotubes. A total of 19,027 and 47,669 H3K27ac-marked enhancers were consistently identified from two biological replicates of before- and during-differentiation bovine satellite cells, respectively. Of these enhancers, 5882 were specific to before-differentiation, 35,723 to during-differentiation, and 13,199 common to before- and during-differentiation bovine satellite cells. Whereas most of the before- or during-differentiation-specific H3K27ac-marked enhancers were located distally to the transcription start site, the enhancers common to before- and during-differentiation were located both distally and proximally to the transcription start site. The three sets of H3K27ac-marked enhancers were associated with functionally different genes and enriched with different transcription factor binding sites. Specifically, many of the H3K27ac-marked enhancers specific to during-differentiation bovine satellite cells were associated with genes involved in muscle structure and development, and were enriched with binding sites for the MyoD, AP-1, KLF, TEAD, and MEF2 families of transcription factors. A positive role was validated for Fos and FosB, two AP-1 family transcription factors, in the differentiation of bovine satellite cells into myotubes by siRNA-mediated knockdown. Conclusions Tens of thousands of H3K27ac-marked active enhancers have been identified from bovine satellite cells before or during differentiation. These enhancers contain binding sites not only for transcription factors whose role in satellite cell differentiation is well known but also for transcription factors whose role in satellite cell differentiation is unknown. These enhancers and transcription factors are valuable resources for understanding the complex mechanism that mediates gene expression during satellite cell differentiation. Because satellite cell differentiation is a key step in skeletal muscle growth, the enhancers, the transcription factors, and their target genes identified in this study are also valuable resources for identifying and interpreting skeletal muscle trait-associated DNA variants in cattle.
- Genome-wide identification of enhancers, transcription factors, and mechanisms that control skeletal muscle differentiation in cattleLyu, Pengcheng (Virginia Tech, 2023-09-21)Skeletal muscle development and growth involve significant changes in gene expression. The overall objective of this dissertation project was to identify transcription factors, enhancers, and mechanisms that control gene expression during skeletal muscle development and growth on a genome-wide scale. Three independent studies were conducted in this project. The objective of the first study was to identify potentially novel mechanisms that mediate myoblast differentiation, a process whereby the mononuclear muscle precursor cells myoblasts express skeletal muscle-specific genes and fuse with each other to form multinucleated myotubes. Comparing gene expression profiles in C2C12 cells, a widely used model of myoblasts, before and 6 days after induced myogenic differentiation by RNA sequencing (RNA-seq) revealed 11,046 differentially expressed genes, of which 5,615 and 5,431 were upregulated and downregulated, respectively. Functional enrichment analyses revealed that the upregulated genes were associated with biological processes or cellular components such as skeletal muscle contraction, autophagy, and sarcomere. In contrast, the downregulated genes were associated with biological processes or cellular components such as ribonucleoprotein complex biogenesis, mRNA processing, and ribosome. Western blot analyses showed an increased conversion of LC3-I to LC3-II protein during myoblast differentiation, further demonstrating the upregulation of autophagy during myoblast differentiation. Blocking the autophagic flux in C2C12 cells with chloroquine inhibited the expression of skeletal muscle-specific genes and the formation of myotubes, confirming a positive role of autophagy in myoblast differentiation and fusion. The aim of the second study was to identify enhancers and transcription factors that regulate gene expression during the differentiation of bovine satellite cells, which are the myogenic precursor cells in adult skeletal muscle, into myotubes. In this study chromatin immunoprecipitation followed by sequencing (ChIP-seq) was used to identify active enhancers, i.e., genomic regions marked with histone modification H3K27ac (acetylation of lysine 27 of H3 histone protein). 19,027 and 47,669 H3K27ac-marked enhancers were identified from undifferentiated and differentiating bovine satellite cells, respectively. Of these enhancers, 5,882 and 35,723were specific to undifferentiated and differentiating bovine satellite cells, respectively while 13,199 were shared by both undifferentiated and differentiating bovine satellite cells. Many of the H3K27ac-marked enhancers specific to differentiating bovine satellite cells were associated with muscle structure and development genes and were enriched with binding sites for MyoD, AP-1, AP-4, KLF, TEAD, and MEF2 transcription factors. Through siRNA-mediated knockdown, AP-4 was found to be essential for differentiation of bovine satellite cells into myotubes. The objective of the third study was to identify enhancers and transcription factors that control differential gene expression in skeletal muscle between neonatal and adult cattle. First, RNA-seq was performed to compare gene expression profiles in skeletal muscle between neonatal calves and adult steers. This analysis identified 924 genes downregulated and 1,021 upregulated from calf to steer muscle. Among genes downregulated in steer muscle were myosin heavy chain3 (MYH3) and MYH8, and among genes upregulated in steer muscle were MYH7 and myoglobin. Surprisingly, many so-called adult muscle genes, such as MYH1 and MYH2, were not differentially expressed between calf and steer muscle. Gene ontology analyses showed that many genes downregulated in steer muscle are involved in protein synthesis and glycolysis and that many genes upregulated in steer muscle function in blood vessel development and immune cell activation. Next, ChIP-seq was performed to identify genomic regions marked with H3K27ac, i.e., active enhancers, in the skeletal muscle of neonatal calves and adult steers. This experiment led to the finding of 20,163 enhancers specifically active in the calf muscle, 14,909 enhancers specifically active in the steer muscle, and 27,002 enhancers active in both the calf and steer muscle. Motif enrichment analyses revealed the enrichment of binding sites for the KLF family and TEAD family transcription factors in enhancers active specifically in the calf muscle, the enrichment of binding sites for the FOXO family and the SMAD family transcription factors in enhancers specifically active in the steer muscle, and the enrichment of binding sites for the MRF family and MEF2 family transcription factors in enhancers active in both the calf and steer muscle. . These results shed light on the differences in gene expression and biology between newborn calf and adult steer skeletal muscle. These results also shed light on the enhancers and transcription factors that control these differences.
- RNA-Sequencing Reveals Upregulation and a Beneficial Role of Autophagy in Myoblast Differentiation and FusionLyu, Pengcheng; Jiang, Honglin (MDPI, 2022-11-10)Myoblast differentiation is a complex process whereby the mononuclear muscle precursor cells myoblasts express skeletal-muscle-specific genes and fuse with each other to form multinucleated myotubes. The objective of this study was to identify potentially novel mechanisms that mediate myoblast differentiation. We first compared transcriptomes in C2C12 myoblasts before and 6 days after induction of myogenic differentiation by RNA-seq. This analysis identified 11,046 differentially expressed genes, of which 5615 and 5431 genes were upregulated and downregulated, respectively, from before differentiation to differentiation. Functional enrichment analyses revealed that the upregulated genes were associated with skeletal muscle contraction, autophagy, and sarcomeres while the downregulated genes were associated with ribonucleoprotein complex biogenesis, mRNA processing, ribosomes, and other biological processes or cellular components Western blot analyses showed an increased conversion of LC3-I to LC3-II protein during myoblast differentiation, further demonstrating the upregulation of autophagy during myoblast differentiation. Blocking the autophagic flux in C2C12 cells with chloroquine inhibited the expression of skeletal-muscle-specific genes and the formation of myotubes, confirming a positive role for autophagy in myoblast differentiation and fusion.
- Single-cell RNA Sequencing Reveals Heterogeneity of Cultured Bovine Satellite CellsLyu, Pengcheng; Qi, Yumin; Tu, Zhijian Jake; Jiang, Honglin (Frontiers, 2021-10-28)Skeletal muscle from meat-producing livestock such as cattle is a major source of food for humans. To improve skeletal muscle growth efficiency or quality in cattle, it is necessary to understand the genetic and physiological mechanisms that govern skeletal muscle composition, development, and growth. Satellite cells are the myogenic progenitor cells in postnatal skeletal muscle. In this study we analyzed the composition of bovine satellite cells with single-cell RNA sequencing (scRNA-seq). We isolated satellite cells from a 2-week-old male calf, cultured them in growth medium for a week, and performed scRNA-seq using the 10x Genomics platform. Deep sequencing of two scRNA-seq libraries constructed from cultured bovine satellite cells yielded 860 million reads. Cell calling analyses revealed that these reads were sequenced from 19,096 individual cells. Clustering analyses indicated that these reads represented 15 cell clusters that differed in gene expression profile. Based on the enriched expression of markers of satellite cells (PAX7 and PAX3), markers of myoblasts (MYOD1, MYF5), and markers of differentiated myoblasts or myocytes (MYOG), three clusters were determined to be satellite cells, two clusters myoblasts, and two clusters myocytes. Gene ontology and trajectory inference analyses indicated that cells in these myogenic clusters differed in proliferation rate and differentiation stage. Two of the remaining clusters were enriched with PDGFRA, a marker of fibro-adipogenic (FAP) cells, the progenitor cells for intramuscular fat, and are therefore considered to be FAP cells. Gene ontology analyses indicated active lipogenesis in one of these two clusters. The identity of the remaining six clusters could not be defined. Overall, the results of this study support the hypothesis that bovine satellite cells are composed of subpopulations that differ in transcriptional and myogenic state. The results of this study also support the hypothesis that intramuscular fat in cattle originates from fibro-adipogenic cells.