Browsing by Author "MacInnes, Breanyn"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- The 2015 landslide and tsunami in Taan Fiord, AlaskaHigman, Bretwood; Shugar, Dan H.; Stark, Colin P.; Ekstrom, Goran; Koppes, Michele N.; Lynett, Patrick; Dufresne, Anja; Haeussler, Peter J.; Geertsema, Marten; Gulick, Sean; Mattox, Andrew; Venditti, Jeremy G.; Walton, Maureen A. L.; McCall, Naoma; Mckittrick, Erin; MacInnes, Breanyn; Bilderback, Eric L.; Tang, Hui; Willis, Michael J.; Richmond, Bruce; Reece, Robert S.; Larsen, Chris; Olson, Bjorn; Capra, James; Ayca, Aykut; Bloom, Colin; Williams, Haley; Bonno, Doug; Weiss, Robert; Keen, Adam; Skanavis, Vassilios; Loso, Michael (Springer Nature, 2018-09-06)Glacial retreat in recent decades has exposed unstable slopes and allowed deep water to extend beneath some of those slopes. Slope failure at the terminus of Tyndall Glacier on 17 October 2015 sent 180 million tons of rock into Taan Fiord, Alaska. The resulting tsunami reached elevations as high as 193 m, one of the highest tsunami runups ever documented worldwide. Precursory deformation began decades before failure, and the event left a distinct sedimentary record, showing that geologic evidence can help understand past occurrences of similar events, and might provide forewarning. The event was detected within hours through automated seismological techniques, which also estimated the mass and direction of the slide - all of which were later confirmed by remote sensing. Our field observations provide a benchmark for modeling landslide and tsunami hazards. Inverse and forward modeling can provide the framework of a detailed understanding of the geologic and hazards implications of similar events. Our results call attention to an indirect effect of climate change that is increasing the frequency and magnitude of natural hazards near glaciated mountains.
- The giant 1960 tsunami in the context of a 6000-year record of paleotsunamis and coastal evolution in south-central ChileMatos-Llavona, Pedro, I; Ely, Lisa L.; MacInnes, Breanyn; Dura, Tina; Cisternas, Marco A.; Bourgeois, Joanne; Bruce, David; DePaolis, Jessica M.; Dolcimascolo, Alexander; Horton, Benjamin P.; Melnick, Daniel; Nelson, Alan R.; Szeliga, Walter; Wesson, Robert L. (Wiley, 2022-03-24)The tsunami associated with the giant 9.5 M-w 1960 Chile earthquake deposited an extensive sand layer above organic-rich soils near Queule (39.3 degrees S, 73.2 degrees W), south-central Chile. Using the 1960 tsunami deposits, together with eye-witness observations and numerical simulations of tsunami inundation, we tested the tsunami inundation sensitivity of the site to different earthquake slip distributions. Stratigraphically below the 1960 deposit are two additional widespread sand layers interpreted as tsunami deposits with maximum ages of 4960-4520 and 5930-5740 cal BP. This >4500-year gap of tsunami deposits preserved in the stratigraphic record is inconsistent with written and geological records of large tsunamis in south-central Chile in 1575, 1837, and possibly 1737. We explain this discrepancy by: (1) poor preservation of tsunami deposits due to reduced accommodation space from relative sea-level fall during the late Holocene; (2) recently evolved coastal geomorphology that increased sediment availability for tsunami deposit formation in 1960; and/or (3) the possibility that the 1960 tsunami was significantly larger at this particular location than other tsunamis in the past >4500 years. Our research illustrates the complexities of reconstructing a complete stratigraphic record of past tsunamis from a single site for tsunami hazard assessment.
- Stratigraphic evidence of two historical tsunamis on the semi-arid coast of north-central ChileDePaolis, Jessica M.; Dura, Tina; MacInnes, Breanyn; Ely, Lisa L.; Cisternas, Marco; Carvajal, Matias; Tang, Hui; Fritz, Hermann M.; Mizobe, Cyntia; Wesson, Robert L.; Figueroa, Gino; Brennan, Nicole; Horton, Benjamin P.; Pilarczyk, Jessica E.; Corbett, D. Reide; Gill, Benjamin C.; Weiss, Robert (Pergamon-Elsevier, 2021-07-21)On September 16, 2015, a Mw 8.3 earthquake struck the north-central Chile coast, triggering a tsunami observed along 500 km of coastline, between Huasco (28.5°S) and San Antonio (33.5°S). This tsunami provided a unique opportunity to examine the nature of tsunami deposits in a semi-arid, siliciclastic environment where stratigraphic and sedimentological records of past tsunamis are difficult to distinguish. To improve our ability to identify such evidence, we targeted one of the few low-energy, organic-rich depositional environments in north-central Chile: Pachingo marsh in Tongoy Bay (30.3°S). We found sedimentary evidence of the 2015 and one previous tsunami as tabular sand sheets. Both deposits are composed of poorly to moderately sorted, gray-brown, fine-to medium-grained sand and are distinct from underlying and overlying organic-rich silt. Both sand beds thin (from ∼20 cm to <1 cm) and fine landward, and show normal grading. The older sand bed is thicker and extends over 125 m further inland than the 2015 tsunami deposit. To model the relative size of the tsunamis that deposited each sand bed, we employed tsunami flow inversion. Our results show that the older sand bed was produced by higher flow speeds and depths than those in 2015. Anthropogenic evidence along with 137Cs and 210Pb dating constrains the age of the older tsunami to the last ∼110 years. We suggest that the older sand bed was deposited by the large tsunami in 1922 CE sourced to the north of our study site. This deposit represents the first geologic evidence of a pre-2015 tsunami along the semi-arid north-central Chile coast and highlights the current and continuing tsunami hazard in the region.