Browsing by Author "Madigan, Michael L."
Now showing 1 - 20 of 120
Results Per Page
Sort Options
- Age-related strength loss affects non-stepping balance recoveryKoushyar, Hoda; Bieryla, Kathleen A.; Nussbaum, Maury A.; Madigan, Michael L. (Public Library of Science, 2019-01-18)Aging is associated with a higher risk of falls, and an impaired ability to recover balance after a postural perturbation is an important contributing factor. In turn, this impaired recovery ability likely stems from age-related decrements in lower limb strength. The purpose of this study was to investigate the effects of age-related strength loss on non-stepping balance recovery capability after a perturbation while standing, without constraining movements to the ankle as in prior reports. Two experiments were conducted. In the first, five young adults (ages 20–30) and six community-dwelling older adults (ages 70–80) recovered their balance, without stepping, from a backward displacement of a support surface. Balance recovery capability was quantified as the maximal backward platform displacement that a subject could withstand without stepping. The maximal platform displacement was 27% smaller among the older group (11.8±2.1 cm) vs. the young group (16.2±2.6 cm). In the second experiment, forward dynamic simulations of a two-segment, rigid-body model were used to investigate the effects of manipulating strength in the hip extensors/flexors and ankle plantar flexors/dorsiflexors. In these, typical age-related reductions in strength were included. The model predicted lower maximal platform displacements with age-related reductions only in plantar flexion and hip flexion strength. These findings support the previously reported age-related loss of balance recovery ability, and an important role for plantar flexor strength in this ability. © 2019 Koushyar et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
- Aging effect on successful reactive-recovery from unexpected slips: a 3D lower extremity joint moment analysisLiu, Jian (Virginia Tech, 2004-09-14)The objective of the proposed study was to perform three-dimensional (3D) inverse dynamics analysis to determine lower extremity (ankle, knee and hip) joint moments on previously collected slip perturbation experimental data. In addition, the aging effect on the joint moment generation in both normal walking and reactive-recovery conditions was examined. Dataset collected during previous slip and fall experiments, which were conducted in a typical gait analysis setting, were analyzed in current study. All the participants were subjected to the screening criteria, which defined the successful reactive-recovery (i.e. non-fall trials) based on slip distance, sliding heel velocity, whole body COM velocity, and motion pictures. Nine young and nine old healthy participants, who were identified possessing representative trials, were involved as participants in current study. A local coordinate system was constructed on each joint and each segment of the lower extremity based on available landmarks using the Gram-Schmidt orthogonalization algorithm. 3D inverse dynamics was implemented to obtained lower extremity joint moments. Magnitude and timing of obtained joint moment patterns during stance phase were subjected to one and two-way analysis of covariance (ANCOVA) with walking velocity as covariate. The aging effect and gait condition effect were evaluated. Increases in peak joint moment, peak joint power, and joint moment generation ratio were detected in successful reactive-recovery. Distinct age-related joint moment generation strategy was observed through findings of peak joint moment ratio and joint moment generation rate. The elderly, who were able to reactive recover, were found to be as rapid as their younger counterparts in terms of initiating and developing reactive joint moment. It was concluded that ankle joint was critical in balance recovery while hip joint assumed the major responsibility of balance maintenance of upper body during successful reactive-recovery. Increased demand on muscle strength during balance recovery lead to the distinct joint moment generation strategy adopted by the elderly, and confirmed the necessity of lower extremity strength training. In addition, implementation of 3D joint moment analysis was justified in current study and was suggested in future slip and fall researches.
- Alterations and Asymmetries in Trunk Mechanics and Neuromuscular Control among Persons with Lower-Limb Amputation: Exploring Potential Pathways of Low Back PainHendershot, Bradford Donald (Virginia Tech, 2012-08-02)Low back pain (LBP) is a substantial secondary disability among persons with lower-limb amputation (LLA). Abnormal mechanics of movement subsequent to LLA may increase the stability demands on the spinal column, and repetitive exposures to such abnormal movements may alter trunk passive properties and/or the coordination of surrounding trunk muscle responses. Further, preferential use of the sound limb may lead to asymmetries in these behaviors. Spine biomechanics (e.g., loading and stability) are substantially influenced by trunk passive properties and neuromuscular control, and alterations in these behaviors are associated with abnormal mechanics of the spinal column and an increased LBP risk. However, there is limited evidence regarding whether prolonged repeated exposures to abnormal gait and movement resulting from LLA and subsequent repeated use of a prosthetic device affect these trunk behaviors. Eight males with unilateral LLA and a matched sample of non-amputation controls completed three studies in which several measures of trunk passive properties, neuromuscular control, and spine biomechanics were quantified using laboratory experiments and biomechanical analyses. Each study involved a distinct task to investigate potential alterations and/or asymmetries in trunk passive properties and neuromuscular control. The first study used a seated balance task to assess trunk postural control and stability. The second study used multidirectional trunk perturbations to assess trunk mechanical and neuromuscular behaviors. Finally, the third study used controlled quasi-static trunk movements to assess load-sharing mechanisms between active and passive low back tissues. Significant alterations and asymmetries in trunk passive properties and trunk neuromuscular responses were present among participants with LLA, specifically reduced and asymmetric trunk stiffness and reflex response; decreased and asymmetric passive contributions to trunk movements; and increased trunk muscle activities. Significant increases in trunk postural sway and trunk muscle activities were also present during seated stability measures. Such alterations in these behaviors may be a result of repetitive exposures to abnormal gait and movement subsequent to LLA and the use of a prosthetic device, and could play a contributing role in the development of LBP in this population. Future work should investigate the temporal relationship between altered trunk behaviors and repeated exposure to abnormal gait and movement subsequent to LLA, to better identify critical years for rehabilitation and preventative care.
- Analysis of an Anti-vibration Glove for Vibration Suppression of a Steering WheelAlabi, Oreoluwa Adekolade (Virginia Tech, 2022-01-11)Exposure to severe levels of hand-arm vibration can lead to hand-arm vibration syndrome. Towards curbing the development of hand-arm vibration syndrome, studies have shown that anti-vibration gloves effectively reduce the transmission of unwanted vibration from vibrating equipment to the human hand. However, most of these studies have focused on the study of anti-vibration gloves for power tools such as chipping hammers, and not much work has been done to design anti-vibration gloves for steering wheels. Also, as most of these studies are based on experimental or modeling techniques, the level of effectiveness and optimum glove properties for better performance remains unclear. To fill this gap, the dynamics of the hand-arm system, with and without gloves, coupled to a steering wheel is studied analytically in this work. A lumped parameter model of the hand-arm system with hand-tool interaction is modeled as a linear spring-damper system. The model is validated by comparing transmissibility obtained numerically to transmissibility obtained from experiments. The resulting governing equations of motion are solved analytically using the method of undetermined coefficients. Parametric analysis is performed on the biomechanical model of the hand-arm system with and without a glove to identify key design parameters. It is observed that the effect of glove parameters on its performance varies based on the frequency range. This observation further motivates us to optimize the glove parameters, using multi-objective optimization, to minimize the overall transmissibility in different frequency ranges.
- An Analysis of Catcher's Mask Performance to Attenuate Head AccelerationsShain, Kellen Saul (Virginia Tech, 2010-04-21)The goals of this study were to measure the ability of catcher's masks to attenuate head accelerations upon impact with a baseball, and to compare these head accelerations to established injury thresholds for concussions. Testing involved using a pneumatic cannon to shoot baseballs at an instrumented (3-2-2-2 accelerometer array) Hybrid III headform (a 50th percentile male head and neck) with and without a catcher's mask on the head. The ball speed was controlled from approximately 26.8 – 35.8 m/s (60 – 80 mph) and regulation NCAA baseballs were used. Peak linear resultant acceleration was 140 – 180 g without a mask and 16 – 30 g with a mask over the range of balls speeds investigated. Peak angular resultant acceleration was 19500 – 25700 rad/sec2 without a mask and 2250 – 3230 rad/sec2 with a mask. The Head Injury Criterion was 93 – 181 without a mask and 3 – 13 with a mask and the Severity index was 110 – 210 without a mask and 3 – 15 with a mask. Catcher's masks reduced head acceleration metrics by approximately 85% when baseballs were impacted with just the headform. Head accelerations with a catcher's mask were substantially lower than contemporary injury thresholds, yet evidence indicates that baseball impacts to the mask still result in concussions.
- Assessing the Effects of Exoskeleton Use on Balance and Postural StabilityPark, Jangho (Virginia Tech, 2021-09-30)There is emerging evidence for the potential of occupational back-support exoskeletons (BSEs) to reduce physical demands, and thereby help control/prevent the risk of overexertion injuries associated with manual material handling. However, it is important to understand whether BSEs also introduce any unintended safety challenges. One potential risk associated with BSE use is increased risk of falls, since their extra weight, rigid structure, and external hip extension torque may increase demands on the postural control system. However, there is currently limited evidence on whether, and to what extent, BSE use alters postural stability and/or fall risk. The primary goal of this work was to understand the effects of exoskeleton use, and quantify the effects of exoskeleton design parameters, on balance and postural stability, with a focus on passive BSEs used for repetitive lifting work. A comprehensive evaluation of BSE use was performed under controlled laboratory conditions, focusing on three classes of human activity that form the basis of maintaining postural balance in diverse real-life scenarios: maintenance of a specified posture, voluntary movement, and reaction to an external perturbation. The first study demonstrated that during quiet bipedal stance, BSE use increased median frequency and velocity of the center of pressure in the anterior-posterior direction. In the second study on level walking, BSE use caused an increase in gait step width and gait variability, and decrease in the margin of stability. BSE use with high supportive torque led to adapted gait patterns in early-stance phase. Hip range of motion and peak hip flexion velocity also decreased, and participants exhibited different strategies to increase mechanical energy for propelling the leg in late-stance phase: these effects increased with increasing torque applied by the exoskeleton. In the final study, BSE use did not alter the maximal lean angle from which individuals could successfully execute single step balance recovery, following a forward loss of balance. However, several recovery responses were negatively affected by BSE use, including increased reaction time, impeded hip flexion, and reduced margin of stability in the high-torque condition. This is the first systematical investigation to quantify the effects of passive BSEs with multiple supportive torque levels on balance and postural stability. While exoskeleton effects on static balance were minimal, more substantial changes in gait spatiotemporal parameters, hip joint kinematics, and dynamic margins of stability were observed in the later studies. Our results indicate that postural stability deteriorated with exoskeleton use in dynamic conditions, and provide mechanistic insight into how stability is altered by different exoskeleton design factors such as added mass, restricted range of motion, and external hip extension torque. While our results are suggestive of increased fall risk, especially in the high-torque condition, fall risk in real life is moderated by a complex combination of individual and environmental conditions. Future work should consider more complex, realistic tasks and also include a more diverse sample that is studied under longer exposure durations, to further elucidate these findings. Our characterizations of a wide variety of postural responses as a function of exoskeleton torque settings are expected to contribute to improving both design and practice guidelines to facilitate the safe adoption of BSEs in the workplace.
- Assistive Intervention in the Characterization of Muscle Activity During Bed Rising and Assessment of Self-Perceived Recovery Measures for Abdominal Surgery Patients in Postoperative CareTran, Grace My-Linh (Virginia Tech, 2004-06-03)Previous literature has indicated that nursing personnel face the second highest rate of occupational injury and illness. Assistive equipment, such as lift and transfer aids, has helped lower work task demands and reduce back stress on patient handlers. However, limited attention has been paid to the safety, comfort and dignity of the patient in postoperative care. Research on the efficacy of self-transfer aids for patients who require limited or no assistance by nursing personnel is insufficient. Ratings of comfort and security have only been evaluated for nursing home residents in a pilot field study, in which residents rated assistive devices as generally equal to or more secure and comfortable than manual transfer methods. The first study reports the laboratory evaluation of bed rising with the use of two self-transfer aids and bed rising unassisted. The objective was to determine muscle activity during bed rising tasks with and without the use of a bed assistive device using surface electromyography (EMG). Twenty male (n = 9; age, 33.7 ± 8.0 years) and female (n = 11; age, 34.5 ± 23.9 years) participants, with normal body mass index (BMI) ranging from 18.4 to 24.9, took part in the study. Mean and peak activity was recorded from three abdominal muscle sites. The results indicated bed rising with the use of a self-transfer device significantly reduced muscle activity compared to bed rising unassisted. Anchoring the devices at a higher height and elevating the torso further reduced muscle activity. Although no differences were observed between devices using EMG, results from the usability survey and final ranking indicated favorable ratings for the ABNOSTRAINTM prototype compared to the Bed Pull-up. A second study was conducted to determine the efficacy of a bed assistive device in a patient population. The objective was to compare self-perceived recovery measures and usage of pain medication between patients in the control (n = 8; age, 34.0 ± 6.3years) and device (n = 7; 40.7 ± 12.4) groups. A total of fifteen female participants undergoing either abdominal hysterectomy (n = 6) or Cesarean-section (n = 9) procedures were recruited for the study. Both groups completed a total of twelve questionnaires over a five-week recovery period. Responses to self-perceived recovery measures were significantly different. In general, the device group reported higher levels of energy, less pain interference, lower perceived pain, less reliance on pain medication and returned to activities of daily living faster than the control group. The results from the study provide clinicians or other practitioners information on the benefits of bed assistive devices for patients during postoperative recovery. Age and surgery differences should be considered when suggesting bed movement patterns with assistive intervention.
- Biomarkers of Physiological Damage and their Potential for Work-Related Musculoskeletal Disorder Risk AssessmentChristian, Marc (Virginia Tech, 2014-03-11)Work-related musculoskeletal disorders (WMSDs) continue to present a substantial personal and economic burden. Biomarkers, in providing objective measures of physiological changes, may offer advantages over current tools for WMSD risk assessment. Existing work has identified biomarkers of cartilage and muscle damage, and demonstrated responsiveness to various forms of physical activity and biomechanical loading. Here, three studies were complete to further assess the occupational relevance/utility of three selected biomarkers: Cartilage Oligomeric Matrix Protein (COMP), Interleukin-6 (IL6), and Creatine Kinase (CK). First, the effects of age, obesity, gender, and diurnal variation was investigated. Significant effects of time, age, and gender were evident, as well as some interactive effects, for COMP and CK, but not IL6. Second, biomarker levels were compared between individuals in occupations having relatively high and low WMSD risk. IL6 levels were greater in the high-risk group, while COMP levels demonstrated an oscillatory pattern, and CK levels did not vary between groups. Third, physical demands were imposed on the lumbar spine during a repetitive flexion/extension task, under conditions with different loading and frequency. IL6 levels varied significantly over time and between added load levels, while CK levels varied over time and was influenced by load and frequency. These studies demonstrate important features of biomarkers; that personal confounding factors need to be considered, that select biomarkers may be sensitive to occupational risk factor exposure, and particularly to task parameters in lifting activities involving the lower back. Further, these studies reveal important information concerning the relevance of the selected biomarkers, favorable time points for biomarker collection, and approximate biomarker levels expected between occupations and exposure to common risk factors. These results support the use of biomarkers in occupational settings for assessing exposure and WMSD risk imposed by common risk factors. Sensitivity to exposure levels is an important precursor to risk prediction, however prospective work is needed to verify predictive validity.
- Biomechanical Analysis and Modeling of Back-Support Exoskeletons for Use in Repetitive Lifting TasksMadinei, Seyed Saman (Virginia Tech, 2022-01-07)Low back pain (LBP) remains the most prevalent and costly work-related disability worldwide and is directly associated with "physical" risk factors prevalent in manual material handling (MMH) tasks. Back-support exoskeletons (BSEs) are a promising ergonomic intervention to mitigate LBP risk, by reducing muscular exertion and spine loading. The purpose of this work was to help better understand both the "intended" and "unintended" consequences of BSE use on physical risk factors for LBP, as an essential prerequisite for the safe and effective implementation of this technology in actual workplaces. The first study assessed the effects of using two BSEs on objective and subjective responses during repetitive lifting involving symmetric and asymmetric postures. Wearing both BSEs significantly reduced peak levels of trunk extensor muscle activity and reduced energy expenditure. Such reductions, though, were more pronounced in the symmetric conditions and differed between the two BSEs tested. The second study quantified the assistive torque profiles of two passive BSEs using a computerized dynamometer, with both human subjects and a mannequin. Clear differences in torque magnitudes were evident between the BSEs, though both generated more assistive torques during flexion than extension. The third study estimated the effects of BSE use on lumbosacral compressive and shear forces during repetitive lifting using an optimization-based model. Using both BSEs reduced peak compression and anteroposterior shear forces, but these effects differed between tasks and BSE designs. Reductions in composite measures of trunk muscle activity did not correspond consistently with changes in spine forces when using a BSE. The fourth study quantified the effects of two passive BSEs on trunk stability and movement coordination during repetitive lifting. Some adverse effects on stability were evident for pelvis and thorax movements and coupling of these body segments, suggesting that caution is needed in selecting a BSE for a given MMH task. Overall, we found that the efficacy of BSEs is design- and task-specific. Important safety features of the exoskeletons were also identified, providing insights on their performance boundaries. Overall, the BSEs tested were more effective and safer in tasks closer to the mid-sagittal plane and with moderate degrees of trunk flexion.
- Biomechanical Evaluation of Lumbar Extensor Fatigue Effects on the Postural Control SystemDavidson, Bradley Steven (Virginia Tech, 2005-01-07)Falls from heights are the fourth leading cause of occupational injury and fatality in the United States. In particular, construction workers such as roofers are often exposed to high risk environments. Recent research has reported that a leading cause of falls among workers is a loss of balance. Therefore, in moving towards reducing the number of occupational falls, further investigation of balance and factors that influence postural control is necessary. The effect of neuromuscular fatigue has been addressed by many investigators; however, few studies have examined the effect of localized fatigue in muscles not located in the lower extremities. Because low back fatigue is so prevalent during manual labor, this investigation determined to study the effects of lumbar extensor fatigue on balance. Chapter 1 includes a complete review of current literature addressing the effects of muscular fatigue on measures of balance. Chapter 2 details an initial investigation of lumbar extensor fatigue on center of pressure (COP) based measures of postural sway and examines the effect of fatiguing rate. Chapter 3 examines the effects of different levels of lumbar extensor fatigue and expands on the previous investigation by examining center of mass (COM) movement and incorporating additional measures of postural control. The results of these investigations indicate that lumbar extensor fatigue affects both COP and COM measures of postural sway, and might also lead to an increased reliance on feedforward postural control mechanisms. These findings contribute to understanding of effects of fatigue on balance and may aid the future design of interventions aimed at fall prevention.
- The Biomechanics of Thoracic Skeletal ResponseKemper, Andrew R. (Virginia Tech, 2010-03-30)The National Highway Traffic Safety Administration (NHTSA) reported that in 2008 there were a total of 37,261 automotive related fatalities, 26,689 of which were vehicle occupants. It has been reported that in automotive collisions chest injuries rank second only to head injuries in overall number of fatalities and serious injuries. In frontal collisions, chest injuries constitute 37.6% of all AIS 3+ injuries, 46.3% of all AIS 4+ injuries, and 43.3% of all AIS 5+ injuries. In side impact collisions, it has been reported that thoracic injuries are the most common type of serious injury (AIS≥3) to vehicle occupants in both near side and far side crashes which do not involve a rollover. In addition, rib fractures are the most frequent type of thoracic injury observed in both frontal and side impact automotive collisions. Anthropomorphic test devices (ATDs), i.e. crash test dummies, and finite element models (FEMs) have proved to be integral tools in the assessment and mitigation of thoracic injury risk. However, the validation of both of these tools is contingent on the availability of relevant biomechanical data. In order to develop and validate FEMs and ATDs with improved thoracic injury risk assessment capabilities, it is necessary to generate biomechanical data currently not presented in the literature. Therefore, the purpose of this dissertation is to present novel material, structural, and global thoracic skeletal response data as well as quantify thoracic injury timing in both frontal belt loading and side impact tests using cadaveric specimens.
- Carbon Nanotube Mechanics: Continuum Model Development from Molecular Mechanics Virtual ExperimentsSears, Aaron Thomas (Virginia Tech, 2006-11-07)Carbon Nanotubes (CNTs) hold great promise as an important engineering material for future applications. To fully exploit CNTs to their full potential, it is important to characterize their material response and ascertain their material properties. We have used molecular mechanics (MM) simulations to conduct virtual experiments on single-wall and multi-wall carbon nanotubes (SWNTs and MWNTs respectively) similar to those performed in the mechanics of materials laboratory on a continuum structure. The output (energy and deformation rather than the load and deflection) is used to understand the material response and formulate macroscopic constitutive relations. From results of MM simulations of axial and torsional deformations on SWNTs, Young's modulus, the shear modulus and the wall thickness of an equivalent continuum tube made of a linear elastic isotropic material were found. These values were used to compare the response of the continuum tube, modeled as an Euler-Bernoulli beam, in bending and buckling with those obtained from the MM simulations. MM simulations have been carried out to find energetically favorable double-walled carbon nanotube (DWNT) configurations, and analyze their responses to extensional, torsional, radial expansion/contraction, bending, and buckling deformations. Loads were applied either to one wall or simultaneously to both walls of an open-ended DWNT. These results were compared against SWNT results. It was found that for simple tension and torsional deformations, results for a DWNT can be derived from those for its constituent SWNTs within 3% error. Radial deformations of a SWNT were achieved by considering a DWNT with the SWNT as one of its walls and moving radially through the same distance all atoms of the other wall of the DWNT thereby causing a pseudo-pressure through changes in the cumulative van der Waals forces which deform the desired wall. Results of radial expansion/contraction of a SWNT were used to deduce an expression for the van der Waals forces, and find through-the-thickness elastic moduli (Young's modulus in the radial direction, Er, and Poisson's ratio ?r?) of the SWNT. We have found four out of the five elastic constants of a SWNT taken to be transversely isotropic about a radial line. MWNTs were studied using the same testing procedures as those used SWNTs. Based on the results from those simulations a continuum model is proposed for a MWNT whose response to mechanical deformations is the same as that of the MWNT. The continuum structure is comprised of concentric cylindrical tubes interconnected by truss elements. Young's modulus, Poisson's ratio, the thickness of each concentric tube, and the stiffness of the truss elements are given. The proposed continuum model is validated by studying its bending and buckling deformations and comparing these results to those from MM simulations. The major contributions to the field on nanotubes and the scientific literature is a simple and robust continuum model for nanotubes. This model can be used to study both SWNTs and MWNTs in either global or local responses by applying different analytic techniques. This model was developed using a consistent engineering methodology that mimicked traditional engineering testing, assumptions and constraints.
- Comparing Gait Between Outdoors and Inside a LaboratoryScanlon, John Michael (Virginia Tech, 2014-05-23)Gait biomechanics have been studied extensively. Many existing studies, though, have been performed in a controlled laboratory setting, and assumed that measures obtained are representative of gait in a naturalistic environment (e.g., outdoors). Several environmental and psychological factors may contribute to differences between these environments, and identifying any such differences is important for generalizing results outside the laboratory. The purpose of this study was to test the implicit assumption that gait inside a research laboratory does not differ from gait outdoors, when a participant is unaware of data collection in the latter. Means and interquartile ranges (IQR) of several spatio-temporal and kinematic gait characteristics were obtained from 19 young adults during several gait conditions both inside a laboratory environment and outdoors. Four comparisons were made between the two environments, including conditions involving: 1) self-selected speeds, 2) matching outdoors self-selected speeds, 3) matching outdoors self-selected speeds while carrying a crate, and 4) matching outdoors hurried speeds. Spatio-temporal variables differed between the two environments in that self-selected walking speed was 1.7% slower inside the lab and cadence was 1.4-2.6% lower for all four comparisons. At heel contact, the foot was 4.4-8.1% more dorsiflexed inside the lab for all comparisons except in matching hurried outdoors walking speed. Minimum toe clearance was 6.5-16.2% lower outdoors for all four comparisons. It is unclear if these differences impair the ability to generalize gait study results to outside the laboratory. Nevertheless, some specific differences exist in gait between environments, and that research should recognize.
- A Comparison of Methods for Measuring Damage in Sucrose-Treated Medial Collateral LigamentsStewart, Victor A. (Virginia Tech, 2013-05-29)The knee is the most complex joint in the human body. It consists of a system of muscle, bone, and ligaments that endures repetitive loading during daily and athletic activities. When this loading is excessive, damage to the knee occurs leading to a decreased quality of life.The medial collateral ligament (MCL) is one of the 4 major ligaments known to be commonly injured in the knee. The risk of injury to the knee joint increases with the elderly and individuals who experience chronic dehydration. For this reason, the focus of this study is to compare different mechanical quantities that can be used to analyze damage to the MCL. In this study, a novel mechanical testing protocol is used to progressively induce damage in dehydrated rat MCLs by performing tensile tests. This involves stretching the ligaments along their longitudinal axes to consecutive and increasing displacements starting at a 0.4 mm displacement and in increments of 0.2 mm until complete failure occurs. The load and change in length that the ligament experiences are measured at each displacement. Three different methods were evaluated to determine subfailure and damage propagation in rat MCLs: changes in tangent stiffness and chord stiffness, and changes in the load value at the 0.4 mm displacement for each load-displacement curve. The findings of this study indicate that the tangent stiffness and load at the 0.4 mm displacement provide information of the early onset of damage propagation. The decrease in chord stiffness of the ligament does not indicate damage progression in the ligament, but rather is the sign of the imminent failure of the MCL.This study provides insightful data into understanding the subfailure damage in the MCL.
- A Computational and Experimental Study on the Electrical and Thermal Properties of Hybrid Nanocomposites based on Carbon Nanotubes and Graphite NanoplateletsSafdari, Masoud (Virginia Tech, 2012-12-13)Carbon nanotubes (CNTs) and graphite nanoplatelets (GNPs) are carrying great promise as two important constituents of future multifunctional materials. Originating from their minimal defect confined nanostructure, exceptional thermal and electrical properties have been reported for these two allotropic forms of carbon. However, a brief survey of the literature reveals the fact that the incorporation of these species into a polymer matrix enhances its effective properties usually not to the degree predicted by the composite\\textquoteright s upper bound rule. To exploit their full potential, a proper understanding of the physical laws characterizing their behavior is an essential step. With emphasis on the electrical and thermal properties, the following study is an attempt to provide more realistic physical and computational models for studying the transport properties of these nanomaterials. Originated from quantum confinement effects, electron tunneling is believed to be an important phenomenon in determining the electrical properties of nanocomposites comprising CNTs and GNPs. To assess its importance, in this dissertation this phenomenon is incorporated into simulations by utilizing tools from statistical physics. A qualitative parametric study was carried out to demonstrate its dominating importance. Furthermore, a model is adopted from the literature and extended to quantify the electrical conductivity of these nanocomposite. To establish its validity, the model predictions were compared with relevant published findings in the literature. The applicability of the proposed model is confirmed for both CNTs and GNPs. To predict the thermal properties, a statistical continuum based model, originally developed for two-phase composites, is adopted and extended to describe multiphase nanocomposites with high contrast between the transport properties of the constituents. The adopted model is a third order strong-contrast expansion which directly links the thermal properties of the composite to the thermal properties of its constituents by considering the microstructural effects. In this approach, a specimen of the composite is assumed to be confined into a reference medium with known properties subjected to a temperature field in the infinity to predict its effective thermal properties. It was noticed that such approach is highly sensitive to the properties of the reference medium. To overcome this shortcoming, a technique to properly select the reference medium properties was developed. For verification purpose the proposed model predictions were compared with the corresponding finite element calculations for nanocomposites comprising cylindrical and disk-shaped nanoparticles. To shed more light on some conflicting reports about the performance of the hybrid CNT/GNP/polymer nanocomposites, an experimental study was conducted to study a hybrid ternary system. CNT/polymer, GNP/polymer and CNT/GNP/polymer nanocomposite specimens were processed and tested to evaluate their thermal and electrical conductivities. It was observed that the hybrid CNT/GNP/polymer composites outperform polymer composites loaded solely with CNTs or GNPs. Finally, the experimental findings were utilized to serve as basis to validate the models developed in this dissertation. The experimental study was utilized to reduce the modeling uncertainties and the computational predictions of the proposed models were compared with the experimental measurements. Acceptable agreements between the model predictions and experimental data were observed and explained in light of the experimental observations. The work proposed herein will enable significant advancement in understanding the physical phenomena behind the enhanced electrical and thermal conductivities of polymer nanocomposites specifically CNT/GNP/polymer nanocomposites. The dissertation results offer means to tune-up the electrical and thermal properties of the polymer nanocomposite materials to further enhance their performance.
- A Connected Work Zone Hazard Detection System for Highway Construction Work ZonesHan, Wenjun (Virginia Tech, 2019-07-02)Roadway construction workers have to work in close proximity to construction equipment as well as high-speed traffic, exposing them to an elevated risk of collisions. This research aims to develop an innovative holistic solution to reduce the risk of collisions at roadway work zones. To this end, a connected hazard detection and prevention system is developed to detect potential unsafe proximities in highway work zones and provide warning and instructions of imminent threats. This connected system collects real-time information from all the actors inside and outside of the work zone and communicates it with a cloud server. A hazard detection algorithm is developed to identify potential proximity hazards between workers and connected/automated vehicles (CAV) and/or construction equipment. Detected imminent threats are communicated to in-danger workers and/or drivers. The trajectories and safety status of each actor is visualized on Virginia Connected Corridors (VCC) Monitor, a custom web-based situational awareness tool, in real-time. To assure the accuracy of hazard detection, the algorithm accommodates various parameters including variant threat zones for workers-on-foot, vehicles, and equipment, the direction of movement, workers' distance to the work zone border, shape of road, etc. The designed system is developed and evaluated through various experiments on the Virginia's Smart Roads located at Virginia Tech. Data regarding activities of workers-on-foot was collected during experiments and was used and classified for activity recognition using supervised machine learning methods. A demonstration was held to evaluate the usability of the developed system, and the results proved the efficacy of the algorithm in successfully detecting potential collisions and provide prompt warnings and instructions. The developed holistic system elevates safety of highway construction and maintenance workers at work sites. It also helps managers and inspectors to keep track of the real-time safety status of their work zone actors as well as the accidents occurrences. As such, with the connected work zone hazard detection system, the safety level and productivity of the workers is expected to be greatly enhanced.
- Design and Control of a Humanoid Robot, SAFFiRLahr, Derek Frei (Virginia Tech, 2014-05-29)Emergency first responders are the great heroes of our day, having to routinely risk their lives for the safety of others. Developing robotic technologies to aid in such emergencies could greatly reduce the risk these individuals must take, even going so far as to eliminate the need to risk one life for another. In this role, humanoid robots are a strong candidate, being able to take advantage of both the human engineered environment in which it will likely operate, but also make use of human engineered tools and equipment as it deals with a disaster relief effort. The work presented here aims to lessen the hurdles that stand in the way through the research and development of new humanoid robot technologies. To be successful in the role of an emergency first responder requires a fantastic array of skills. One of the most fundamental is the ability to just get to the scene. Unfortunately, it is at this level that humanoid robots currently struggle. This research focuses on the complementary development of physical hardware, digital controllers, and trajectory planning necessary to achieve the research goals of improving the locomotion capabilities of a humanoid robot. To improve the physical performance capabilities of the robot, this research will first focus on the interaction between the hip and knee actuators. It is shown that much like the human body, a biped greatly benefits from the use of biarticular actuation. Improvements in efficiency as much as 30% are possible by simply interconnecting the hip roll and knee pitch joints. Balancing and walking controllers are designed to take advantage of the new hardware capabilities and expand the terrain capabilities of bipedal walking robots to uneven and non-stationary ground. A hybrid position/force control based balancing controller stabilizes the robot's COM regardless of the terrain underfoot. In particular two feedback mechanisms are shown to greatly improve the stability of bipedal systems in response to unmodelled dynamics. The hybrid position/force approach is shown through experiments to greatly extend humanoid capabilities to many types of terrain. With robust balancing ensured, walking trajectories are defined using an improved linear inverted pendulum model that incorporates the swing leg dynamics. The proposed method is shown to significantly reduce the control authority (by 50%) required for satisfactory trajectory following. Three parameters are identified which provide for quick manual or numerical solutions to be found to the trajectory problem. The walking and balance controller were operated on four different terrains successfully, strewn plywood, gravel, and high pile synthetic grass. Furthermore, SAFFiR is believed to be the first bipedal robot to ever walk on sand. The hardware enabled force control architecture was very effective at modulating ground reaction torques no matter the ground conditions. This in combination with highly accurate state estimation provided a very stable balance controller on top of which successful walking was demonstrated.
- Developing and Evaluating New Methods for Assessing Postural Control and DynamicsZhang, Hong Bo (Virginia Tech, 2013-03-15)Falls are the leading cause of injuries among older adults (>65) and frequently result in reduced mobility, loss of independence, decreased quality of life, injury, and death. Extensive research has been conducted regarding postural coordination and control, and other mechanisms/processes involved in maintaining postural stability. However, there is relatively limited knowledge regarding the patterns of joint coordination, the underlying postural controller, and efficient methods to assess passive and active musculoskeletal properties relevant to balance. In the current work, three new methods were developed to address these limitations and also to better understand the effects of localized ankle muscle fatigue, gender, and aging on postural coordination and control. First, two methods were used to evaluate postural coordination. A wavelet coherence approach was developed and applied to assess the level and pattern of coordination between pairs of joints (i.e., ankle-knee, ankle-trunk, and ankle-head). In addition, the uncontrolled manifold method was implemented for evaluation of potential whole-body coordination control goals. Clear patterns of intermittent wavelet coherence were evident, indicating that joint coordination is intermittently executed. Both in-phase and anti-phase coherence were detected over frequencies of 2.5 -- 4.0 Hz. Shoulder and head kinematics appeared more likely than the whole-body center of mass as control goals for whole body coordination. Both aging and ankle muscle fatigue led to a reduction of joint coordination. Second, an intermittent sliding mode controller was developed to model quiet upright stance. In contrast to most previous postural controllers, which assume continuous control, an intermittent controller was considered more consistent with recent evidence on muscle activity and the results of the first study on postural coordination. The sliding mode controller was able to accurately track kinematics and kinetics, and generated passive and active ankle torques comparable with previous results. Ankle fatigue led to an increase in active ankle torque especially among young adults and males. Third, a new method was developed to estimate passive and active mechanical properties at the ankle (e.g., stiffness and damping). This method was inspired from intermittent control theory, and the earlier results noted. As opposed to conventional methods, this new method is computationally efficient and does not require external mechanical or sensory perturbations. The method yielded a ratio of passive to active ankle torques consistent with earlier evidence, and larger passive and active ankle torques among males and older adults. A post-fatigue increase of active ankle torque was estimated, especially among males and young adults. In addition to providing new analytical methods, the noted studies suggest that older adults have decreased joint coordination and increased ankle stiffness. As a practical implication of this, fall prevention training programs may benefit from seeking to develop appropriate joint coordination strategies and ankle stiffness magnitudes. To expand on the current work, future research should consider measuring muscle contraction characteristics at multiple joints and in different postures or activities.
- Development and Evaluation of Methods to Assess Physical Exposures in the WorkplaceKim, Sun Wook (Virginia Tech, 2012-12-06)Work-related musculoskeletal disorders (WSMDs) are an important health concern in the workplace. Accurately quantifying the level of physical exposures (i.e., kinematics and kinetics) is essential for risk assessments, developing and/or testing interventions, and improving estimates of exposure-response relationships. Such exposures ideally should be quantified in situ, while workers interact with the actual work environment to complete their tasks. However, in practice, relatively crude and/or time-consuming methods are often used, including self-reports, observational methods, and simple instrumentation, since directly assessing physical exposures is challenging in the workplace, and typically resource prohibitive. Inertial motion capture (IMC) and in-shoe pressure measurement (IPM) systems are emerging wearable technologies, and they can, respectively, facilitate monitoring of body kinematics and external forces on the body in the workplace. Thus, this research examined the potential of such technologies in exposure assessments, and evaluated them in comparison to mature laboratory systems (i.e., optical motion capture system and force platform) or direct observation. Performance of an IMC system was evaluated during several manual material handling (MMH) tasks, in terms of estimated body kinematics and kinetics at selected body parts. A practical issue, regarding calibrating the IPM system in the field, was addressed by defining an ad hoc global coordinate system using a force platform. Several regression models were developed for estimating center-of-pressure location and ground reaction forces. Given that outputs from the IMC and the IPM systems are numerically fine-grained, but generally lack contextual information about a given job, task classification approaches were explored to automatically identify task types and their time proportions in a job. Overall, the outcomes from these studies demonstrated the potential of the IMC and the IPM systems for measuring physical exposures in the workplace. However, estimation of physical exposures using these systems requires further improvements in some cases. This research provided groundwork for future rapid and direct assessments of physical exposures in the workplace, and which needs to be expanded and validated in future efforts.
- Development and evaluation of postural control models for lifting motions and balance controlQu, Xingda (Virginia Tech, 2008-03-28)Accurately simulating human motions is a major function of and challenge to digital human models and integrating humans in computer-aided design systems. Numerous successful applications of human motion simulation have already demonstrated their ability to improve occupational efficiency, effectiveness, and safety. In this dissertation, a novel motion simulation model using fuzzy logic control is presented. This model was motivated by the fact that humans use linguistic terms to guide their behaviors while fuzzy logic provides mathematical representations of linguistic terms. Specifically in this model, fuzzy logic was used to specify a neural controller which was generally considered as the part in the postural control system that plans human motions. Fuzzy rules were generated according to certain trends observed from actual human motions. An optimization procedure was performed to specify the parameters of the membership functions by minimizing the differences between the simulated and actual final postures. This research contributed to the field of human movement science by providing a motion simulation model that can accurately predict novel human motions and provide interpretations of potential human motion planning strategies. Understanding balance control is another research focus in this dissertation. Investigating balance control may aid in preventing unnecessary fall-related incidents and understanding the postural control system. Since human behaviors are generally effective and efficient, balance control models (both two- and three-dimensional) based on an optimal control strategy were developed to aid in better understanding balance control. Specifically, the neural controller was considered as an optimal controller that minimizes a performance index defined by physical quantities relevant to sway. Free model parameters, such as weights of relevant physical quantities and sensory delay time, were determined by an optimization procedure whose objective was to minimize a scalar error between simulated and experimental center-of-pressure (COP) based measures. Many factors, such as aging, localized muscle fatigue, and external loads, have been found to adversely affect balance control. At the same time, behaviors during upright stance are commonly characterized by COP-based measures. Thus, changes in COP based measures with aging, LMF, and external loads were addressed by using the proposed models, and possible postural control mechanisms were identified by interpreting these changes. Findings from these studies demonstrated that the proposed models were able to accurately simulate human sway behaviors and provide plausible mechanisms regarding how the postural control system works when maintaining upright balance.