Browsing by Author "Mane, S. P."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Genome analysis of a major urban malaria vector mosquito, Anopheles stephensiJiang, X.; Peery, A.; Hall, B.; Sharma, A.; Chen, X.-G.; Waterhouse, R. M.; Komissarov, A.; Riehle, M. M.; Shouche, Y.; Sharakhova, Maria V.; Lawson, D.; Pakpour, Nazzy; Arensburger, Peter; Davidson, V. L. M.; Eiglmeier, K.; Emrich, S.; George, P.; Kennedy, R. C.; Mane, S. P.; Maslen, G.; Oringanje, C.; Qi, Y.; Settlage, Robert E.; Tojo, M.; Tubio, J. M. C.; Unger, Maria F.; Wang, B.; Vernick, K. D.; Ribeiro, J. C.; James, A. A.; Michel, K.; Riehle, M. A.; Luckhart, Shirley; Sharakhov, Igor V.; Tu, Zhijian Jake (Biomed Central, 2014-01-01)Background: Anopheles stephensi is the key vector of malaria throughout the Indian subcontinent and Middle East and an emerging model for molecular and genetic studies of mosquito-parasite interactions. The type form of the species is responsible for the majority of urban malaria transmission across its range. Results: Here, we report the genome sequence and annotation of the Indian strain of the type form of An. stephensi. The 221 Mb genome assembly represents more than 92% of the entire genome and was produced using a combination of 454, Illumina, and PacBio sequencing. Physical mapping assigned 62% of the genome onto chromosomes, enabling chromosome-based analysis. Comparisons between An. stephensi and An. gambiae reveal that the rate of gene order reshuffling on the X chromosome was three times higher than that on the autosomes. An. stephensi has more heterochromatin in pericentric regions but less repetitive DNA in chromosome arms than An. gambiae. We also identify a number of Y-chromosome contigs and BACs. Interspersed repeats constitute 7.1% of the assembled genome while LTR retrotransposons alone comprise more than 49% of the Y contigs. RNA-seq analyses provide new insights into mosquito innate immunity, development, and sexual dimorphism. Conclusions: The genome analysis described in this manuscript provides a resource and platform for fundamental and translational research into a major urban malaria vector. Chromosome-based investigations provide unique perspectives on Anopheles chromosome evolution. RNA-seq analysis and studies of immunity genes offer new insights into mosquito biology and mosquito-parasite interactions.
- PATRIC: The VBI PathoSystems Resource Integration CenterSnyder, E. E.; Kampanya, N.; Lu, J.; Nordberg, E. K.; Karur, H. R.; Shukla, Maulik; Soneja, J.; Tian, Y.; Xue, T.; Yoo, H.; Zhang, F.; Dharmanolla, C.; Dongre, N. V.; Gillespie, J. J.; Hamelius, J.; Hance, M.; Huntington, K. I.; Jukneliene, D.; Koziski, J.; Mackasmiel, L.; Mane, S. P.; Nguyen, V.; Purkayastha, A.; Shallom, J.; Yu, G.; Guo, Y.; Gabbard, Joseph L.; Hix, D.; Azad, A. F.; Baker, S. C.; Boyle, Stephen M.; Khudyakov, Y.; Meng, Xiang-Jin; Rupprecht, C.; Vinje, J.; Crasta, Oswald R.; Czar, M. J.; Dickerman, Allan W.; Eckart, J. D.; Kenyon, R.; Will, R.; Setubal, Joao C.; Sobral, Bruno (2007-01)The PathoSystems Resource Integration Center (PATRIC) is one of eight Bioinformatics Resource Centers (BRCs) funded by the National Institute of Allergy and Infection Diseases (NIAID) to create a data and analysis resource for selected NIAID priority pathogens, specifically proteobacteria of the genera Brucella, Rickettsia and Coxiella, and corona-, calici- and lyssaviruses and viruses associated with hepatitis A and E. The goal of the project is to provide a comprehensive bioinformatics resource for these pathogens, including consistently annotated genome, proteome and metabolic pathway data to facilitate research into counter-measures, including drugs, vaccines and diagnostics. The project's curation strategy has three prongs: 'breadth first' beginning with whole-genome and proteome curation using standardized protocols, a 'targeted' approach addressing the specific needs of researchers and an integrative strategy to leverage high-throughput experimental data (e.g. microarrays, proteomics) and literature. The PATRIC infrastructure consists of a relational database, analytical pipelines and a website which supports browsing, querying, data visualization and the ability to download raw and curated data in standard formats. At present, the site warehouses complete sequences for 17 bacterial and 332 viral genomes. The PATRIC website (https://patric.vbi.vt.edu) will continually grow with the addition of data, analysis and functionality over the course of the project.
- A versatile computational pipeline for bacterial genome annotation improvement and comparative analysis, with Brucella as a use caseYu, G. X.; Snyder, E. E.; Boyle, Stephen M.; Crasta, Oswald R.; Czar, M. J.; Mane, S. P.; Purkayastha, A.; Sobral, Bruno; Setubal, Joao C. (2007-06)We present a bacterial genome computational analysis pipeline, called GenVar. The pipeline, based on the program GeneWise, is designed to analyze an annotated genome and automatically identify missed gene calls and sequence variants such as genes with disrupted reading frames (split genes) and those with insertions and deletions (indels). For a given genome to be analyzed, GenVar relies on a database containing closely related genomes (such as other species or strains) as well as a few additional reference genomes. GenVar also helps identify gene disruptions probably caused by sequencing errors. We exemplify GenVar's capabilities by presenting results from the analysis of four Brucella genomes. Brucella is an important human pathogen and zoonotic agent. The analysis revealed hundreds of missed gene calls, new split genes and indels, several of which are species specific and hence provide valuable clues to the understanding of the genome basis of Brucella pathogenicity and host specificity.