Browsing by Author "Martin, Daniel"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Analysis and Design of Phase Lock Loop Based Islanding Detection MethodsMartin, Daniel (Virginia Tech, 2011-05-04)As distributed generation penetrates the electric power grid at higher power levels, grid interface issues with distributed generation must be addressed. The current power system consists of central power generators, while the future power system will include many more distributed resources. The centralized power generation system is controlled by utility operators, but many distributed resources will not be controlled by utility operators. Distributed generation must use smart control techniques for high reliability and ideal grid interface. This thesis discusses the grid interface issue of anti-islanding. An electric island occurs when a circuit breaker in the electric power system trips. The distributed resource should disconnect from the electric grid for safety reasons. This thesis will give an overview of the possible methods. Each method will be analyzed using the ability to detect under the non-detection zone and the economic feasibility of the method. This thesis proposes two addition cases for analysis that exist in the electric power system: the effect of multiple methods in parallel in the non-detection zone and the possibility of a false trip caused by a load step. Multiple methods in parallel are possible because the islanding detection method is patentable, so each grid interface inverter company is likely to implement a different islanding detection method. The load step represents a load change when a load is switched on.
- Spray Deposition on Weeds (Palmer Amaranth and Morningglory) from a Remotely Piloted Aerial Application System and Backpack SprayerMartin, Daniel; Singh, Vijay; Latheef, Mohamed A.; Bagavathiannan, Muthukumar V. (MDPI, 2020-09-19)This study was designed to determine whether a remotely piloted aerial application system (RPAAS) could be used in lieu of a backpack sprayer for post-emergence herbicide application. Consequent to this objective, a spray mixture of tap water and fluorescent dye was applied on Palmer amaranth and ivyleaf morningglory using an RPAAS at 18.7 and 37.4 L·ha−1 and a CO2-pressurized backpack sprayer at a 140 L·ha−1 spray application rate. Spray efficiency (the proportion of applied spray collected on an artificial sampler) for the RPAAS treatments was comparable to that for the backpack sprayer. Fluorescent spray droplet density was significantly higher on the adaxial surface for the backpack sprayer treatment than that for the RPAAS platforms. The percent of spray droplets on the abaxial surface for the RPAAS aircraft at 37.4 L·ha−1 was 4-fold greater than that for the backpack sprayer at 140 L·ha−1. The increased spray deposition on the abaxial leaf surfaces was likely caused by rotor downwash and wind turbulence generated by the RPAAS which caused leaf fluttering. This improved spray deposition may help increase the efficacy of contact herbicides. Test results indicated that RPAASs may be used for herbicide application in lieu of conventional backpack sprayers.