Browsing by Author "Mavi, Anele"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Modelling and Analysis of Viscoelastic and Nanofluid Effects on the Heat Transfer Characteristics in a Double-Pipe Counter-Flow Heat ExchangerMavi, Anele; Chinyoka, Tiri; Gill, Andrew (MDPI, 2022-05-28)This study computationally investigates the heat transfer characteristics in a double-pipe counter-flow heat-exchanger. A heated viscoelastic fluid occupies the inner core region, and the outer annulus is filled with a colder Newtonian-Fluid-Based Nanofluid (NFBN). A mathematical model is developed to study the conjugate heat transfer characteristics and heat exchange properties from the hot viscoelastic fluid to the colder NFBN. The mathematical modelling and formulation of the given problem comprises of a system of coupled nonlinear partial differential Equations (PDEs) governing the flow, heat transfer, and stress characteristics. The viscoelastic stress behaviour of the core fluid is modelled via the Giesekus constitutive equations. The mathematical complexity arising from the coupled system of transient and nonlinear PDEs makes them analytically intractable, and hence, a recourse to numerical and computational methodologies is unavoidable. A numerical methodology based on the finite volume methods (FVM) is employed. The FVM algorithms are computationally implemented on the OpenFOAM software platform. The dependence of the field variables, namely the velocity, temperature, pressure, and polymeric stresses on the embedded flow parameters, are explored in detail. In particular, the results illustrate that an increase in the nanoparticle volume-fraction, in the NFBN, leads to enhanced heat-exchange characteristics from the hot core fluid to the colder shell NFBN. Specifically, the results illustrate that the use of NFBN as the coolant fluid leads to enhanced cooling of the hot core-fluid as compared to using an ordinary (nanoparticle free) Newtonian coolant.
- Volume-of-Fluid Based Finite-Volume Computational Simulations of Three-Phase Nanoparticle-Liquid-Gas Boiling Problems in Vertical Rectangular ChannelsMavi, Anele; Chinyoka, Tiri (MDPI, 2022-08-08)This study develops robust numerical algorithms for the simulation of three-phase (solid-liquid-gas) boiling and bubble formation problems in rectangular channels. The numerical algorithms are based on the Finite Volume Methods (FVM) and implement both the volume-of-fluid (VOF) methods for liquid-gas interface tracking as well as the volume-fraction methods to account for the concentration of embedded solid nano-particles in the liquid phase. Water is used as the base-liquid and the solid phase is modelled via metallic nano-particles (both aluminium oxide and titanium oxide nano-particles are considered) that are homogeneously mixed within the liquid phase. The gas phase is considered as a vapour arising from the bolling processes of the liquid-phase. The finite volume methodology is implemented on the OpenFOAM software platform, specifically by careful modification and manipulation of existing OpenFOAM solvers. The governing fluid dynamical equations, for the three-phase boiling problem, take into account the thermal conductivity effects of the solid (nano-particle), the momentum and energy equations for both the liquid-phase and the gas-phase, and finally the decoupled mass conservation equations for the liquid- and gas- phases. The decoupled mass conservation equations are specifically used to model the phase change between the liquid- and gas- phases. In addition to the FVM and VOF numerical methodologies for the discretization of the governing equations, the pressure-velocity coupling is resolved via the PIMPLE algorithm, a combination of the Pressure Implicit with Splitting of Operator (PISO) and the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithms. The computational results are presented graphically with respect to variations in time as well as in the nano-particle volume fractions. The simulations and results accurately capture the formation of vapour bubbles in the two-phase (particle-free) liquid-gas flow and additionally the computational algorithms are similarly demonstrated to accurately illustrate and capture simulated boiling processes. The presence of the nano-particles is demonstrated to enhance the heat-transfer, boiling, and bubble formation processes.