Browsing by Author "McGee, John A."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Forest Change Dynamics Across Levels of Urbanization in the Eastern USWu, Yi-Jei (Virginia Tech, 2014-09-03)The forests of the eastern United States reflect complex and highly dynamic patterns of change. This thesis seeks to explore the highly variable nature of these changes and to develop techniques that will enable researchers to examine their temporal and spatial patterns. The objectives of this research are to: 1) determine whether the forest change dynamics in the eastern US differ across levels of the urban hierarchy; 2) identify and explore key micropolitan areas that deviate from anticipated trends in forest change; and 3) develop and apply techniques for Big Data exploration of Landsat satellite images for forest cover analysis over large regions. Results demonstrate that forest change at the micropolitan level of urbanization differs from rural and metropolitan forest dynamics. The work highlights the dynamic nature of forest change within the Piedmont Atlantic megaregion, largely attributed to the forestry industry. This is by far the most dominant change phenomenon in the region but is not necessarily indicative of permanent forest change. A longer temporal analysis may be required to separate the contribution of the forest industry from permanent forest conversion in the region. Techniques utilized in this work suggest that emerging tools that provide supercomputing/parallel processing capabilities for the analysis of big satellite data open the door for researchers to better address different landscape signals and to investigate large regions at a high temporal and spatial resolution. The opportunity now exists to conduct initial assessments regarding spatio-temporal land cover trends in the southeast in a manner previously not possible.
- Geospatial Analysis to Site Urban AgricultureParece, Tammy E. (Virginia Tech, 2016-03-17)The rapid expansion of urban systems in both area and population represents the most significant landuse/landcover change occurring in the world today. Urbanization is often accompanied by increasing environmental degradation. This degradation is related to stormwater runoff, air temperatures greater than surrounding rural areas, increased air and water pollution, losses of vegetated lands, and lack of access to sufficient and healthy foods in lower-income areas. Urban agriculture (UA), a practice long established in previous eras but neglected for many decades, can mediate such concerns by providing greenspaces to improve ecosystem services. Successful practice of UA requires recognition of interactions between social and environmental patterns. Neglect of these interactions leads to failure in spatially integrating social and environmental dimensions of the urban landscape, limiting the success of UA. This study investigates siting of UA within Roanoke, Virginia, a compact urban region characterized by social and environmental conditions that can be addressed by effective siting and practice of UA. This research takes a broader perspective than prior studies on UA and urban greenspaces. It proposes innovative applications of geospatial technologies for urban assessment. Studies on UA have typically focused on food insecurity, while studies on greenspaces focus on parks and tree canopy cover, without investigating interactions that promote synergies between these two efforts. Research over the past few years is now recognizing potential contributions for urban agriculture to alleviate environmental issues such as stormwater runoff, soil infertility, and the urban heat island effect. Little of this research has been devoted to the actual siting of urban agriculture to specifically alleviate both socio-economic and environmental issues. This research applies geospatial technologies to evaluate spatial patterns characterizing both environmental and socio-economic disparities within the City of Roanoke, Virginia. This approach has identified specific locations that are open and available for urban agriculture, and has appraised varying levels of socio-economic and environmental parameters. This research identified, at the census block group level, areas with varying levels of degradation. Thus, those locations in which a new urban agriculture greenspace can contribute to both socio-economic and environmental reparation. This research has identified spatial dimensions in which UA will assist in restoring ecosystem services to guide various food production activities. These results can be generalized to other urban locations and contribute to efficient use of urban land and space, improving the three pillars of worldwide sustainability – economic, environment, and social.
- Standardization of Street Sampling Units to Improve Street Tree Population Estimates Derived by i-Tree Streets Inventory SoftwarePatterson, Mason Foushee (Virginia Tech, 2012-05-02)Street trees are a subpopulation of the urban forest resource and exist in the rights-of-way adjacent to public roads in a municipality. Benefit-cost analyses have shown that the annual benefits provided by the average street tree far outweigh the costs of planting and maintenance. City and municipal foresters spend a majority of their time and resources managing street tree populations. Sample street tree inventories are a common method of estimating municipal street tree populations for the purposes of making urban forest policy, planning, and management decisions. i-Tree Streets is a suite of software tools capable of producing estimates of street tree abundance and value from a sample of street trees taken along randomly selected sections (segments) of public streets. During sample street tree inventories conducted by Virginia Tech Urban Forestry, it was observed that the lengths of the sample streets recommended by i-Tree varied greatly within most municipalities leading to concern about the impact of street length variation on sampling precision. This project was conducted to improve i-Tree Streets by changing the recommended sampling protocol without altering the software. Complete street tree censuses were obtained from 7 localities and standardized using GIS. The effects of standardizing street segments to 3 different lengths prior to sampling on the accuracy and precision of i-Tree Streets estimates were investigated though computer simulations and analysis of changes in variation in number of trees per street segment as a basis for recommending procedural changes. It was found that standardizing street segments significantly improved the precision of i-Tree Streets estimates. Based on the results of this investigation, it is generally recommended that street segments be standardized to 91m (300 ft) prior to conducting a sample inventory. Standardizing to 91m will significantly reduce the number of trees, the number of street segments, and the percentage of total street segments that must be sampled to achieve an estimate with a 10% relative standard error. The effectiveness of standardization and the associated processing time can be computed from municipal attributes before standardization so practitioners can gauge the marginal gains in field time versus costs in processing time. Automating standardization procedures or conducting an optimization study of segment length would continue to increase the efficiency and marginal gains associated with street segment standardization.