Browsing by Author "McGill, Tyler R."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Evaluation of the National Research Council (2001) dairy model and derivation of new prediction equations. 1. Digestibility of fiber, fat, protein, and nonfiber carbohydrateWhite, Robin R.; Roman-Garcia, Y.; Firkins, J. L.; VandeHaar, M. J.; Armentano, L. E.; Weiss, W. P.; McGill, Tyler R.; Garnett, R.; Hanigan, Mark D. (2017-05)Evaluation of ration balancing systems such as the National Research Council (NRC) Nutrient Requirements series is important for improving predictions of animal nutrient requirements and advancing feeding strategies. This work used a. literature data set (n = 550) to evaluate predictions of total-tract digested neutral detergent fiber (NDF), fatty acid (FA), crude protein (CP), and nonfiber carbohydrate (NFC) estimated by the NRC (2001) dairy model. Mean biases suggested that the NRC (2001) lactating cow model overestimated true FA and CP digestibility by 26 and 7%, respectively, and under-predicted NDF digestibility by 16%. All NR,C (2001) estimates had notable mean and slope biases and large root mean squared prediction error (RMSPE), and concordance (CCC) ranged from poor to good. Predicting NDF digestibility with independent equations for legumes, corn silage, other forages, and nonforage feeds improved CCC (0.85 vs. 0.76) compared with the re-derived NRC (2001) equation form (NRC equation with parameter estimates re-derived against this data set). Separate FA digestion coefficients were derived for different fat supplements (animal fats, oils. and other fat types) and for the basal diet. This equation returned improved (from 0.76 to 0.94) CCC compared with the re-derived NRC (2001) equation form. Unique CP digestibility equations were derived for forages, animal protein feeds, plant protein feeds, and other feeds, which improved CCC compared with the re-derived NRC (2001) equation form (0.74 to 0.85). New NFC digestibility coefficients were derived for grain-specific starch digestibilities, with residual organic matter assumed to be 98% digestible. A Monte Carlo cross-validation was performed to evaluate repeatability of model fit. In this procedure, data were randomly subsetted 500 tunes into derivation (60%) and evaluation (40%) data sets, and equations were derived using the derivation data and then evaluated against the independent evaluation data. Models derived with random study effects demonstrated poor repeatability of fit in independent evaluation. Similar equations derived without random study effects showed improved fit against independent data, and little evidence of biased parameter estimates associated with failure to include study effects. The equations derived in this analysis provide interesting insight, into how NDF, starch, FA, and CP digestibilities are affected by intake, feed type, and diet composition.
- Improving the Efficiency of Dairy Cattle FeedingMcGill, Tyler R. (Virginia Tech, 2017-04-26)Biological functions that use amino acids (AA) are limited by AA supply. This concept was likened to staves in a barrel, where the shortest stave determines the barrel's ability to hold water (Mitchell and Block, 1946). Inaccuracies in models that predict nutrient supply and requirements of dairy cows result in inefficient feeding, as under-prediction of requirements results in deficiency, and over-prediction results in excess. To avoid limitations in production due to AA deficiencies, protein is fed in quantities that likely exceed requirements. Overfeeding of AA results in increased expenses for producers and increased N excretion to the environment, providing economic and environmental incentives to increase N-efficiency. Work presented in the following chapters evaluated the impact of AA supplementation on milk production in dairy cattle, and evaluated the PREP10 and NRC (2001) nutrient requirement model predictions. In two feeding trials (Chapter 2 and Chapter 3), low protein diets did not result in decreased milk production, indicating that protein requirements were overestimated. Although supplementation of AA did not increase milk production, low protein diets resulted in greater N-efficiency, especially when supplemented with Histidine. Evaluation of the PREP10 and NRC (2001) models (Chapter 4) used production data from the literature to identify deficiencies in prediction equations, and found that correction of model bias would considerably reduce prediction errors. Model inaccuracies affect the inefficiency of dairy cow feeding, and must be evaluated to improve feed efficiency. Such improvements could act synergistically with AA supplementation to more closely match nutrient supply to requirements.