Browsing by Author "McPherson, Malcolm J."
Now showing 1 - 10 of 10
Results Per Page
Sort Options
- Analysis and optimization of coalbed methane gas well productionHolman, Travis Scott (Virginia Tech, 1996-07-15)Coalbed methane wells have been used for many years as a viable means of extracting quantities of methane gas for use as a clean and efficient energy source. However, there is a limited understanding of many of the factors involved during the extraction process. As the more easily attainable reservoirs are depleted, it is imperative to gain a greater comprehension of these factors in order to develop techniques to efficiently collect economical quantities of methane gas in the future. For this investigation, an extensive database was compiled, consisting of a large set of parameters pertaining to the development of coalbed methane gas wells. Using the information contained in this database, a statistical analysis was performed in order to gain a better understanding of the relationships between the many factors involved in extracting quantities of methane gas from the ground. The results of this analysis showed that the majority of the parameters shown to have the greatest impact on methane production were heavily dependent upon the geology of the region. As a result, any attempt to exploit them for optimization exercises would be extremely difficult. Of the parameters shown to have the least dependence on naturally occurring phenomena, the amount of proppant sand used to hold fractures open within the well system after stimulation was shown to have the most impact During the well stimulation procedure, the proppant sand is carried into the fractures in the strata by a foam fracturing fluid. The sand acts to support the fracture system, increasing the permeability of formation, and allowing the methane gas to flow to the wellbore. By treating the sand particles with certain reagents, it is possible to render them hydrophobic, making it possible for them to stick to the bubbles within the foam and be carried deeper into the formation. Results of an investigation of sands treated to different degrees of hydrophobicity have shown that such treatments significantly increase the amount of sand distributed over a greater distance.
- Application of water mist to fuel-rich fires in model coal mine entriesLoomis, Ian Morton (Virginia Tech, 1995-03-05)As the nature of coal mInmg changes, to higher production associated with higher mechanization, the way in which mine safety is approached must also change. This situation was clearly shown in a very devastating coal mine fire in late 1984. In the absence of effective fire-fighting procedures and equipment the affected mine was quickly rendered helpless. Of particular concern with coal mine fires is the possibility of entering a fuel-rich state. In this state current practices have proven to be of little use in gaining control over the conflagration. Recent experiences with the application of water mist to industrial fires has shown that use of fog can be an efficacious agent in controlling large scale fires. The postulations of this phenomenon concern the ability of the water, as a fog, to get deeply within the fire structure. In this manner it works to remove the three legs of the fire triangle~ heat, oxygen, and fuel. The research contained in this thesis dwells in three associated areas. These are: the general theory of water mist application relative to current practices~ the design and construction of a fire tunnel for experimental work; and the results obtained from experiments with fuel-rich fires in the simulated coal mine entry. The results of this research are most encouraging, not only for the more devastating fuelrich fires, but also for application from the onset of fire fighting activities in the coal mine environment.
- Development of an Underground Automated Thin-Seam Coal Mining MethodHolman, Darren Wayne (Virginia Tech, 1999-05-10)It is predicted that coal mining in Southwest Virginia, and the economic stability that it brings to the area, will continue to decline over the next decade unless an environmentally sound, and economically viable means can be found to extract seams of high quality coal in the thickness range of 14 to 28 inches. Research into autonomous machine guidance, coupled with developments of thin-seam mining equipment, offer new opportunities for devising mining layouts suitable for extracting these thin seams in a cost effective manner. These layouts must involve well-planned transportation and ventilation routes that will allow safe conditions for personnel. This implies that the mining face, where coal is extracted, will be completely automated, ensuring the safety of the workers. This thesis presents a brief overview of current technologies utilized for underground coal mining in the United States. This is followed by a review of developments in highwall mining that are potentially applicable in underground mining of thin seams. Some past attempts at thin seam mining are discussed, and evaluated for their short comings. An overview of the more recent advances in the guidance systems for use in autonomous mining machines is also presented. The new advances that several manufacturers are developing to address the integration of mining and continuous haulage systems are also investigated. That background is employed in devising a conceptual mining system for the underground mining of coal seams in the 14 to 28 inch range of thickness. This thesis proves that adapting new technologies and concepts from existing ones can lead to meaningful advances in the field of natural resources recovery. This system utilizes a newly designed panel layout that takes into account haulage, supplying, ventilation, equipment, and machine guidance. This system is proposed to show that new ways can be developed to take advantage of the reserves in the 14 to 28 inch range of thickness. This shows that new technology and design innovation can turn currently uneconomic resources, into economic reserves. This kind of innovation is what is needed to keep this region of Southwest Virginia economically viable. This system is a huge step in the direction that thin-seam research needs to take. Most of the equipment suggested for this proposed system is already available.
- Economic and system feasibility study of municipal waste stowage in underground coal minesGrimes, Janet A. (Virginia Tech, 1995-12-15)Public concern about surface disposal of municipal waste offers the mining industry potentially enormous economic and environmental opportunities. If underground space created by mining can successfully be utilized for safe waste stowage during the mining process, there will be immediate and substantial benefits to all sectors of the underground mining industry. To investigate an integrated system of mining and waste stowage, an economic and feasibility model was developed. Major issues include waste transportation, emplacement area, waste characteristics after emplacement, and alterations to current mining operations. In this preliminary investigation, economic feasibility is the basis for comparison between alternative systems in this research. Past and existing underground waste disposal systems are used to evaluate the model.
- The Effects of Backfilling on Ground Control and Recovery in Thin-Seam Coal MiningDonovan, James G. (Virginia Tech, 1999-05-12)A large percentage of Southern Appalachian coal reserves are located in seams less than 36" thick. As thicker and currently more mineable, deposits are exhausted, methods of underground thin-seam extraction will have to be developed. These methods must be capable of removing coal efficiently and economically. Past experience with highwall mining of thin-seam coal has indicated that recovery rates tend to be lower than in conventional operations. It is suspected that this will also apply to underground thin-seam mining, regardless of proposed technology or mining method. A method of increasing recoveries from thin-seam mining operations is necessary in order to exploit thin-seam reserves. Backfilling is one alternative that may find applicability in thin-seam coal mining. The ability of backfill to provide additional ground support may enhance coal recovery by allowing for the design of undersized pillars. Backfill has been used extensively in hard rock mining but has found limited use in coal mining. Its adaptability to thin-seam coal mining has been examined and is presented in this thesis. Backfill is capable of providing additional ground support by restricting lateral deformation of surrounding coal pillars and roof. This additional support can result in significant increases in recovery from thin-seam coal deposits. However, the overall feasibility of backfill is dependent on the in situ behavior of the fill material, the properties of the fill, the effects of the filling method on the total mining operation, and the cost of filling per extra ton of coal recovered. The influence of these parameters has been studied and indicate that, in certain situations, backfilling for the purpose of increasing recovery rates from thin-seam coal mines is feasible.
- Experiments Concerning the Commercial Extraction of Methane from Coalbed ReservoirsLoomis, Ian Morton (Virginia Tech, 1997-04-14)In late 1992 coalbed methane became the most significant source of natural gas produced in Virginia. This gas is held within the coal formations adsorbed to the coal matrix. The current well stimulation technology applies a high pressure fluid to the coal formation surrounding the wellbore to induce a series of fractures. The research documented in this thesis investigates several new technologies that could replace or augment the current well stimulation approach of hydraulic fracturing. The application of liquid carbon dioxide, as the stimulation agent was investigated in a series of permeability tests. These measurements were made using a radial flow technique developed specifically for this research project. The results of the tests using liquid carbon dioxide to enhance the permeability of coal samples, to methane gas, indicated a significant increase in permeability of the samples. Comparison to a reference material showed, however, that the increase was of a general nature, not by specific interaction with the coal matrix. Rather, the permeability increase was due to reduced resistance of the borehole skin. Studies of the new, radial flow, permeability measurement approach showed good agreement to a conventional, axial flow, approach for similar sample bedding orientation to the gas flow. The documented experiments also include investigations into the potential for using custom designed nitrocellulose/nitroglycerin/RDX based propellant charges to produce extensive fracturing away from the wellbore. The first series of these experiments concerned the characterization of the burn properties for these propellants and their mixtures. Utilizing an interior ballistics approach, these laboratory small-scale shots were numerically modeled with a program written as a part of this project. Using the small-scale results and the modeled data, a series of large-scale test shots were developed and fired to gain understanding of the scale effects. The small-scale constant volume bomb, and the large-scale vented bomb were both custom designed and fabricated for this project. Comparisons of the laboratory data and modeled predictions show good agreement for both the small and large-scale test series. This work concludes by presenting considerations for utilizing the propellant based well stimulation approach in the water filled wells in southwest Virginia.
- Feasibility of an Integrated Thin Seam Coal Mining and Waste Disposal SystemBasu, Kohinoor (Virginia Tech, 1997-12-15)The depletion of more attractive thicker and easily accessible coal seams in the central Appalachia will direct attention towards the extraction of coal seams thinner than 28 in. This thesis investigates the feasibility of an integrated mining and backfilling system applicable to thin seams. Two conceptual mining systems, namely Auger mining and Self Advancing Miner, have been proposed for this purpose. Both these systems are designed to remotely mine coal from the seams. Several attempts were made in the past to mine coal in a similar fashion but were not very successful due to several problems inherent to thin seams. The lack of effective steering techniques, accurate coal/rock interface and pillar thickness detection techniques were the main shortcomings of the systems. These problems were addressed in the proposed conceptual mining systems. Several coal/rock interface and rib thickness detection techniques currently available in the market or in the prototype stage have been discussed. Recent developments in coal/rock interface detection and direction sensing techniques have good potential in alleviating the previously encountered problems. Sensitivity analyses have been performed to assess the of effect critical mining parameters on the production potential of these systems. The self advancing miner has been found to be more promising than auger mining. Conceptual panels and face layouts for both systems have been included. Two types of filling methods namely pneumatic and hydraulic are considered applicable under thin seam conditions. A backfilling technique using rubber hoses for fill placement can be applied with both methods. Sensitivity analysis have been performed to establish the relationship between face operation cost, filling cost per ton and development cost per foot. Resulting analyses indicate that panel cost per short ton of coal is more sensitive to filling cost than on development cost.
- Flow characteristics of jet fans in mines: experimental and numerical modelingKonduri, Indu Mohan (Virginia Tech, 1996-12-05)The use of induction fans for face ventilation in room and pillar mines has proved to be an efficient, flexible, and viable technique. In addition to their merits over conventional systems, induction fans enable remote controlled mine operations with low maintenance requirements. Theoretical investigations were conducted initially to verify the potential of free air jets in mine ventilation. A laboratory model using water as the fluid medium was designed to study the flow characteristics of a jet fan in a blind entry. The model was tested in a variety of brattice curtain and nozzle combinations to investigate the ventilating efficiency of jet fans. A jet fan was selected and tested in a full scale model and in a coal mine. Experiments were conducted to evaluate the laboratory flow models. Flow quantities and velocities in the entry were measured using state-of-the-art instrumentation to quantify various parameters. Air velocities near the face were found to be satisfactory to dilute contaminants from the face. A model for the axial velocity profile of the jet was suggested. Beyond 25m distance from the jet fan exit the jet tended to move away from the wall to the opposite wall. Carbon dioxide was used as a tracer gas to measure the effective ventilating air quantity near the face and re-circulation in various tests. The re-circulation involved in the system was found to be less than 40% in all the experiments. It was also found that the use of line curtains in combination with a jet a fan can eliminate any type of re-circulation. Numerical modeling of a jet fan in a typical coal mine heading was conducted to obtain details of the flow. The results of the simulation using computational fluid dynamics were similar to the flow patterns observed in the experiments. It was found that a jet fan can effectively ventilate an entry as deep as 40m. Fan positioning, airway geometry, airway surface properties, and mine layout severely affect its performance. It is therefore necessary to understand the flow mechanics of a jet fan in a mine heading before applying the technique for a particular situation.
- The Ignition of Methane and Coal Dust by Air Compression - The Experimental ProofLin, Wei (Virginia Tech, 1997-05-01)When a large area of open gob collapses suddenly, a windblast is produced that can cause considerable damage throughout the infrastructure of a mine. In a few cases, the windblast has been accompanied by ignitions of methane and/or coal dust. Analytical and numerical analyses investigated the transient behavior of the air through the small time period during which the roof is falling. This is sufficiently short to allow adiabatic compression of the air, i.e. negligible heat transfer to rock surfaces. Controlled escape of the air via interconnecting entries limits the build-up of air pressure. However, this same phenomenum causes the potential energy of the falling strata to be concentrated into a diminishing mass of air. Computer simulations predicted that the temperature of the air would increase rapidly as the roof descends, reaching values that are capable of igniting either methane or coal dust. This thesis concentrates on a series of laboratory tests involving the compression of mixtures of air, methane and coal dust under a falling weight and while allowing controlled escape of the mixture. The transient responses on pressure and temperature sensors were recorded. In addition to an analysis of those records, the thesis highlights those conditions in which ignitions occurred.
- Preventing spontaneous combustion in gob areas of retreating longwall panels by ventilating without bleedersBanik, Janajiban (Virginia Tech, 1994-12-09)Spontaneous combustion occurring in inaccessible areas of underground coal mines is often intractable. Even though routine inspection and/or continuous monitoring help detect the incubation of spontaneous heatings, they may not be able to identify the locations with accuracy. Moreover, implementation of remedial measures is difficult. A new approach to ventilation system design to overcome the problem is investigated in this dissertation. Ventilation layouts are analyzed to identify potential problem areas and nullify the probability of fire occurrence. The focus is directed to longwall gobs. The changing gob characteristics, especially the varying degree of consolidation at different parts of a gob as the face moves, is considered. Analytical studies and computer modeling show that bleederless ventilation in retreating panels is promising. The W -system of ventilation is most suitable. However, there may be difficulties in maintaining the middle entry in a Wsystem