Browsing by Author "Menkulasi, Fatmir"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Development of a Composite Concrete Bridge System for Short-to-Medium-Span BridgesMenkulasi, Fatmir (Virginia Tech, 2014-08-23)The inverted T-beam bridge system provides an accelerated bridge construction alternative for short-to-medium-span bridges. The system consists of adjacent precast inverted T-beams finished with a cast-in-place concrete topping. The system offers enhanced performance against reflective cracking, and reduces the likelihood of cracking due to time dependent effects. The effects of transverse bending due to concentrated wheel loads are investigated with respect to reflective cracking. Transverse bending moment are quantified and compared to transverse moment capacities provided by a combination of various cross-sectional shapes and transverse connections. A design methodology for transverse bending is suggested. Tensile stresses created due to time dependent and temperature effects are quantified at the cross-sectional and structure level and strategies for how to alleviate these tensile stresses are proposed. Because differential shrinkage is believed to be one of the causes of deck cracking in composite bridges, a study on shrinkage and creep properties of seven deck mixes is presented with the goal of identifying a mix whose long terms properties reduce the likelihood of deck cracking. The effects of differential shrinkage at a cross-sectional level are numerically demonstrated for a variety of composite bridge systems and the resistance of the inverted T-beam system against time dependent effects is highlighted. End stresses in the end zones of such a uniquely shaped precast element are investigated analytically in the vertical and horizontal planes. Existing design methods are evaluated and strut-and-tie models, calibrated to match the results of 3-D finite element analyses, are proposed as alternatives to existing methods to aid designers in sizing reinforcing in the end zones. Composite action between the precast beam and the cast-in-place topping is examined via a full scale test and the necessity of extended stirrups is explored. It is concluded that because of the large contact surface between the precast and cast-in-place elements, cohesion alone appears to provide the necessary horizontal shear strength to ensure full composite action. Live load distribution factors are quantified analytically and by performing four live loads tests. It is concluded that AASHTO's method for cast-in-place slab span bridges can be conservatively used in design.
- Horizontal Shear Connectors for Precast Prestressed Bridge DecksMenkulasi, Fatmir (Virginia Tech, 2002-08-21)The full-width, full-depth precast panel system is very convenient for rehabilitation of deteriorated decks as well as for new bridge construction. The horizontal shear strength at the interface between the two interconnected elements is of primary importance in order to provide composite action. The strength of the bond between the two precast members should be high enough to prevent any progressive slip from taking place. Flexural strength, shear strength and deflection characteristics all depend on the satisfactory performance of the interface to provide composite action. However, the case when both of the interconnected elements are precast members bonded by means of grout, is not currently addressed by ACI or AASHTO. This is the main impetus for this project. A total of 36 push-off tests were performed to develop a method for quantifying horizontal shear strength and to recommend the best practice for the system. Test parameters included different haunch heights, different grout types, different amount and different type of shear connectors. Two equations, for uncracked and cracked concrete interfaces, are proposed to be used in horizontal shear design when the precast panels are used. Predictive equations are compared with available methods for the horizontal shear strength of the precast panel system. Conclusions and recommendations for the optimum system are made.
- Implementation of a Precast Inverted T-Beam System in Virginia: Part II: Analytic and Field InvestigationsMenkulasi, Fatmir; Cousins, Thomas E.; Roberts-Wollmann, Carin L. (Virginia Transportation Research Council, 2018-08)The inverted T-beam superstructure is a bridge system that provides an accelerated construction alternative for short-to-medium-span bridges. The system consists of adjacent precast inverted T-beams with a cast-in-place concrete topping. This bridge system is expected to not experience the reflective cracking problems manifested in short-to-medium-span bridges constructed with traditional adjacent voided slab or adjacent box beams. This report presents the results of three phases of a comprehensive research project to develop and implement an inverted T-beam system for Virginia. The three phases are: investigation of time-dependent and temperature effects, investigation of end zone stresses, and live load testing. The first investigation is of time-dependent effects in composite bridges with precast inverted T-beams. The analysis was performed for a two-span continuous bridge. An analytical study was performed to quantify the stresses generated as a result of differential shrinkage, creep and temperature gradient at various sections in both directions. At the cross-sectional level, an elastic sectional analysis approach using the age-adjusted effective modulus method was used to perform the investigation. At the structure level, the effects of uniform temperature changes, thermal gradients and differential shrinkage and creep were investigated and quantified in terms of axial restraint forces and restraint moments. It is shown that, by paying attention to detailing and by selecting a mix design for the cast-in-place topping that has relatively low shrinkage and high creep, the potential for excessive cracking can be reduced. The second investigation is of the stresses in the end zones of such a uniquely shaped precast element. The transfer of prestressing force creates vertical and horizontal tensile stresses in the end zones of the beam. A series of three-dimensional (3D) finite element analyses were performed to investigate the magnitude of these tensile stresses. Various methods of modeling the prestressing force, including the modeling of the transfer length, were examined and the effect of notches at the ends of the precast beams was explored. Existing design methods were evaluated; strut-and-tie models, calibrated to match the results of 3D finite element analyses, are proposed as alternatives to existing methods to aid designers in sizing reinforcing in the end zones. The final section reports the results of live load testing performed on the first inverted T-beam bridge in Virginia on U.S. 360 over the Chickahominy River. A finite element model of Phase I of the U.S. 360 Bridge was created and the live load distribution factors were analytically determined. Live load tests using a stationary truck were performed on Phase I of the U.S. 360 Bridge with the purpose of quantifying live load distribution factors and validating the results from the finite element analyses. It is concluded that it is appropriate to estimate live load distribution factors using AASHTO provisions for cast-in-place slab span bridges.