Browsing by Author "Menon, Nidhi"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Engineered microsystems and their application in the culture and characterization of three-dimensional (3D) breast tumor modelsMenon, Nidhi (Virginia Tech, 2021-05-26)Microsystems are a broad category of engineered technologies in the micro and nano scale that have a diverse range of applications. They are emerging as a powerful tool in the field of biomedical research, drug discovery, as well as clinical diagnostics and prognostics, especially with regards to cancer. One of the major challenges in precision and personalized medicine in cancer lies in the technical difficulties of ex-vivo cell culture and propagation of the limited number of primary cells derived from patients. Therefore, our aims are to 1. Develop a biologically relevant platform for culturing cancer cells and characterize how it influences the cell growth and phenotype compared to conventional 2-dimensional(2D) cell culturing techniques, 2. Isolate secondary metabolites from endophytic fungi and screen them on the platform for potential anticancer properties in a preliminary drug discovery pipeline, 3. Design and develop biosensors for quantifying cell responses in real-time within these systems. Several biomaterial scaffolds with microscale architectures have been utilized for engineering the tumor extracellular matrix, but very few studies have thoroughly characterized the phenotypic changes in their cell models, which is critical for translational applications of biomaterial systems. The overall objective of these studies is to engineer a biomimetic platform for the culture of breast cancer cells in vitro and to quantify and profile their phenotypic changes. In order to do this, we first evaluated a blank-slate matrix consisting of thiolated collagen, hyaluronic acid and heparin, cross-linked chemically via Michael addition reaction using diacrylate functionalized poly (ethylene glycol). The hydrogel network was used with triple-negative breast cancer cells and showed significant changes in characteristics, with cells self-assembling to form a 3D spheroid morphology, with higher viability, and exhibiting significantly lower cell death upon chemotherapy treatment, as well as had a decrease in proliferation. Furthemore, the transcriptomic changes quantified using RNA-Seq and Next-Gen Sequencing showed the dramatic changes in some of the commonly targeted pathways in cancer therapy. Furthermore, we were able to show the importance of our biomimetic platform in the process of drug discovery using fungal endophytes and their secondary metabolites as the source for potential anticancer molecules. Additionally, we developed gold nanoparticle and antibody-based (ICAM1 and CD11b) sensors to quantify cell responses spatiotemporally on our platform. We were able to show quenching of the green fluorescent fluorophores due to the Förster Resonance Energy Transfer mechanism between the fluorophore and the gold nanometal surface. We also observed antigen-dependent recovery of fluorescence and inhibition of energy transfer upon the antibody binding to the cell-surface receptors. Future efforts are directed towards incorporating the hydrogel system with antigen-dependent sensors in a conceptually-designed microfluidic platform to spatiotemporally quantify the expression of surface proteins in various cells of the tumor stroma. This includes the migration,infiltration, and polarization of specific immune cells. This approach will provide further insight into the heterogeneity of cells at the single-cell resolution in defined spaces within the 3D microfluidic platform.
- Heparin-based hydrogel scaffolding alters the transcriptomic profile and increases the chemoresistance of MDA-MB-231 triple-negative breast cancer cellsMenon, Nidhi; Dang, Ha X.; Datla, Udaya Sree; Moarefian, Maryam; Lawrence, Christopher B.; Maher, Christopher A.; Jones, Caroline N. (2020-05-21)The tumor microenvironment plays a critical role in the proliferation and chemoresistance of cancer cells. Growth factors (GFs) are known to interact with the extracellular matrix (ECM) via heparin binding sites, and these associations influence cell behavior. In the present study, we demonstrate the ability to define signals presented by the scaffold by pre-mixing growth factors, such as epidermal growth factor, into the heparin-based (HP-B) hydrogel prior to gelation. In the 3D biomimetic microenvironment, breast cancer cells formed spheroids within 24 hours of initial seeding. Despite higher number of proliferating cells in 2D cultures, 3D spheroids exhibited a higher degree of chemoresistance after 72 hours. Further, our RNA sequencing results highlighted the phenotypic changes influenced by solid-phase GF presentation. Wnt/beta-catenin and TGF-beta signaling were upregulated in the cells grown in the hydrogel, while apoptosis, IL2-STAT5 and PI3K-AKT-mTOR signaling were downregulated. With emerging technologies for precision medicine in cancer, this nature of fine-tuning the microenvironment is paramount for cultivation and downstream characterization of primary cancer cells and rare circulating tumor cells (CTCs), and effective screening of chemotherapeutic agents.
- LYSMD3: A mammalian pattern recognition receptor for chitinHe, Xin; Howard, Brad A.; Liu, Yang; Neumann, Aaron K.; Li, Liwu; Menon, Nidhi; Roach, Tiffany; Kale, Shiv D.; Samuels, David C.; Li, Hongyan; Kite, Trenton; Kita, Hirohito; Hu, Tony Y.; Luo, Mengyao; Jones, Caroline N.; Okaa, Uju Joy; Squillace, Diane L.; Klein, Bruce S.; Lawrence, Christopher B. (2021-07-20)Chitin, a major component of fungal cell walls, has been associated with allergic disorders such as asthma. However, it is unclear how mammals recognize chitin and the principal receptor(s) on epithelial cells that sense chitin remain to be determined. In this study, we show that LYSMD3 is expressed on the surface of human airway epithelial cells and demonstrate that LYSMD3 is able to bind chitin, as well as beta-glucan, on the cell walls of fungi. Knockdown or knockout of LYSMD3 also sharply blunts the production of inflammatory cytokines by epithelial cells in response to chitin and fungal spores. Competitive inhibition of the LYSMD3 ecto-domain by soluble LYSMD3 protein, multiple ligands, or antibody against LYSMD3 also blocks chitin signaling. Our study reveals LYSMD3 as a mammalian pattern recognition receptor (PRR) for chitin and establishes its role in epithelial cell inflammatory responses to chitin and fungi.