Browsing by Author "Menon, Rekha"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Impact of Channel Estimation Errors on Space Time Trellis CodesMenon, Rekha (Virginia Tech, 2003-12-15)Space Time Trellis Coding (STTC) is a unique technique that combines the use of multiple transmit antennas with channel coding. This scheme provides capacity benefits in fading channels, and helps in improving the data rate and reliability of wireless communication. STTC schemes have been primarily designed assuming perfect channel estimates to be available at the receiver. However, in practical wireless systems, this is never the case. The noisy wireless channel precludes an exact characterization of channel coefficients. Even near-perfect channel estimates can necessitate huge overhead in terms of processing or spectral efficiency. This practical concern motivates the study of the impact of channel estimation errors on the design and performance of STTC. The design criteria for STTC are validated in the absence of perfect channel estimates at the receiver. Analytical results are presented that model the performance of STTC systems in the presence of channel estimation errors. Training based channel estimation schemes are the most popular choice for STTC systems. The amount of training however, increases with the number of transmit antennas used, the number of multi-path components in the channel and a decrease in the channel coherence time. This dependence is shown to decrease the performance gain obtained when increasing the number of transmit antennas in STTC systems, especially in channels with a large Doppler spread (low channel coherence time). In frequency selective channels, the training overhead associated with increasing the number of antennas can be so large that no benefit is shown to be obtained by using STTC. The amount of performance degradation due to channel estimation errors is shown to be influenced by system parameters such as the specific STTC code employed and the number of transmit and receive antennas in the system in addition to the magnitude of the estimation error. Hence inappropriate choice of system parameters is shown to significantly alter the performance pattern of STTC. The viability of STTC in practical wireless systems is thus addressed and it is shown that that channel estimation could offset benefits derived from this scheme.
- Interference Avoidance based Underlay Techniques for Dynamic Spectrum SharingMenon, Rekha (Virginia Tech, 2007-04-30)Dynamic spectrum sharing (DSS) is a new paradigm for spectrum allocation that is expected to lead to more efficient spectrum usage and alleviate the spectrum-scarcity that has been perceived in recent years. DSS refers to the opportunistic, dynamic, and uncoordinated use of the spectrum by multiple, possibly non-cooperating, systems. It allows bands which may be underutilized by incumbent or legacy systems to be shared by agile or cognitive radios on a ``do no harm" basis. An ideal DSS technique is one which efficiently uses the allocated spectrum and maximizes the performance of the DSS network while causing no interference to the legacy radio system with which it coexists. We address this issue in our work by investigating desirable features for DSS with respect to the impact on a legacy radio system as well as the performance of a DSS network. It is found that ``ideal" DSS techniques with respect to both objectives are characterized by the removal of the strongest interferers in the system and averaging of the remaining interference. This motivates the use of an interference avoidance (IA) based underlay technique for DSS. The performance benefit provided by this technique, over an IA-based overlay technique, is shown to increase with the transmission bandwidth available to the DSS system. It is also shown that this technique is more robust to inaccuracies in the system knowledge required for implementing IA. An example of an IA-based underlay technique is a spreading-sequence-based transmission scheme that employs sequence adaptation to avoid interference. We use game-theoretic tools to design such schemes for distributed or ad hoc networks. The designed schemes can also be used to avoid interfering with other agile or static radios. We then extend this work to Ultra Wideband systems which can maximally exploit the gains from the proposed scheme due to the large transmission bandwidths.