Browsing by Author "Michel, F. Marc"
Now showing 1 - 11 of 11
Results Per Page
Sort Options
- Abundance and Speciation of Surface Oxygen on Nanosized Platinum Catalysts and Effect on Catalytic ActivitySerra-Maia, Rui; Winkler, Christopher; Murayama, Mitsuhiro; Tranhuu, Kevin; Michel, F. Marc (2018-06-18)Oxygen at the surface of nanosized platinum has a direct effect on catalytic activity of oxidation−reduction chemical reactions. However, the abundance and speciation of oxygen remain uncertain for platinum with different particle size and shape characteristics, which has hindered the development of fundamental property−activity relationships. We have characterized two commercially available platinum nanocatalysts known as Pt black and Pt nanopowder to evaluate the effects of synthesis and heating conditions on the physical and surface chemical properties, as well as on catalytic activity. Characterization using complementary electron microscopy, X-ray scattering, and spectroscopic methods showed that the larger average crystallite size of Pt nanopowder (23 nm) compared to Pt black (11 nm) corresponds with a 70% greater surface oxygen concentration. Heating the samples in air resulted in an increase in surface oxygen concentration for both nanocatalysts. Surface oxygen associated with platinum is in the form of chemisorbed oxygen, and no significant amounts of chemically bonded platinum oxide were found for any of the samples. The increase in surface oxygen abundance during heating depends on the initial size and surface oxygen content. Hydrogen peroxide decomposition rate measurements showed that larger particle size and higher surface chemisorbed oxygen correlate with enhanced catalytic activity. These results are particularly important for future studies that aim to relate the properties of platinum, or other metal nanocatalysts, with surface reactivity.
- Development and implementation of a scalable and versatile test for COVID-19 diagnostics in rural communitiesCeci, Alessandro; Muñoz-Ballester, Carmen; Tegge, Allison N.; Brown, Katherine L.; Umans, Robyn A.; Michel, F. Marc; Patel, Dipankumar; Tewari, Bhanu P.; Martin, James E.; Alcoreza, Oscar Jr.; Maynard, Thomas M.; Martinez-Martinez, Daniel; Bordwine, Paige; Bissell, Noelle; Friedlander, Michael J.; Sontheimer, Harald; Finkielstein, Carla V. (Nature Publishing Group, 2021-07-20)Rapid and widespread testing of severe acute respiratory coronavirus 2 (SARS-CoV-2) is essential for an effective public health response aimed at containing and mitigating the coronavirus disease 2019 (COVID-19) pandemic. Successful health policy implementation relies on early identification of infected individuals and extensive contact tracing. However, rural communities, where resources for testing are sparse or simply absent, face distinctive challenges to achieving this success. Accordingly, we report the development of an academic, public land grant University laboratory-based detection assay for the identification of SARS-CoV-2 in samples from various clinical specimens that can be readily deployed in areas where access to testing is limited. The test, which is a quantitative reverse transcription polymerase chain reaction (RT-qPCR)-based procedure, was validated on samples provided by the state laboratory and submitted for FDA Emergency Use Authorization. Our test exhibits comparable sensitivity and exceeds specificity and inclusivity values compared to other molecular assays. Additionally, this test can be re-configured to meet supply chain shortages, modified for scale up demands, and is amenable to several clinical specimens. Test development also involved 3D engineering critical supplies and formulating a stable collection media that allowed samples to be transported for hours over a dispersed rural region without the need for a cold-chain. These two elements that were critical when shortages impacted testing and when personnel needed to reach areas that were geographically isolated from the testing center. Overall, using a robust, easy-to-adapt methodology, we show that an academic laboratory can supplement COVID-19 testing needs and help local health departments assess and manage outbreaks. This additional testing capacity is particularly germane for smaller cities and rural regions that would otherwise be unable to meet the testing demand.
- Effects of Oxyanion Surface Loading on the Rate and Pathway of Ferrihydrite TransformationNamayandeh, Alireza; Borkiewicz, Olaf J.; Bompoti, Nefeli M.; Watson, Steven K.; Kubicki, James D.; Chrysochoou, Maria; Michel, F. Marc (American Chemical Society, 2023-10-19)In natural environments, ferrihydrite (Fh) reacts readily with the contaminant and nutrient oxyanions through surface complexation. While previous experiments showed that the transformation of Fh to Gt and Hm under oxic conditions at 70 °C is controlled by the type and strength of oxyanion surface complexes, the impact of surface loading on this process is only partly understood. Synchrotron scattering methods and chemical analysis were used to develop a kinetic model that describes the impact of oxyanion surface loading on the rate and pathway of Fh transformation by using arsenate (AsO43-) and phosphate (PO43-). Kinetic modeling showed that AsO43- and PO43- adsorption decreased the rate of transformation and favored Hm formation over Gt. Higher surface loadings increasingly inhibited Fh transformation with a greater effect for PO43- compared with AsO43-. This information has implications for understanding the impacts of oxyanions on the transformation of natural Fe to Gt and Hm in environmental systems.
- Establishing a physical and chemical framework for Amorphous Calcium Carbonate (ACC) biomineralizationMergelsberg, Sebastian Tobias (Virginia Tech, 2018-07-05)Recent advances in high-resolution analytical methods have brought about a paradigm shift in our understanding of how crystalline materials are formed. The scientific community now recognizes that many earth materials form by multiple pathways that involve metastable intermediates. Biogenic calcium carbonate minerals are now recognized to develop by aggregating molecules or clusters to form amorphous phases that later transform to one or more crystalline polymorphs. Amorphous calcium carbonate (ACC) is now recognized as a precursor to CaCO₃ biominerals in a wide variety of natural environments. Recent studies suggest an ACC pathway may imprint a different set of dependencies from those established for classical growth processes. Previous ACC studies provided important insights, but a quantitative understanding of controls on ACC composition when formed at near-physiological conditions is not established. The Mg content of ACC and calcite is of particular interest as a minor element that is frequently found in final crystalline products in calcified skeletons. This three-part dissertation investigated biological and well-characterized synthetic ACC using high-energy x-ray methods, Raman spectroscopy, and mechanical tests. The findings establish chemical and physical properties of ACC in the exoskeleton of crustaceans and show Mg and P levels are tuned in the mineral component to optimize exoskeleton function that could be sensitive to ecological or environmental conditions. Calcite and chitin crystallinity exhibit a similar body-part-specific pattern that correlates directly with the mechanical strength of the exoskeleton. Insights from this study suggest precise biological control of ACC chemistry in the to regulate exoskeleton properties. Laboratory measurements using quantitative methods and compositions that approximate the physiological conditions of crustaceans, demonstrate at least two types of ACC are formed by controlling Mg concentration and alkalinity. We also find temporal changes in the short-range ordering of ACC after precipitation that is dependent upon carbonate content. The findings from this study provide a quantitative basis for deciphering relationships between ACC structures, solution chemistry, and the final transformation products under biologically relevant conditions.
- Establishing the suitability of 3D-printed devices for low-temperature geochemical experimentsKletetschka, Karel; Rimstidt, J. Donald; Long, Timothy E.; Michel, F. Marc (Elsevier, 2018-08-23)
- Geometrically frustrated interactions drive structural complexity in amorphous calcium carbonateNicholas, Thomas C.; Stones, Adam Edward; Patel, Adam; Michel, F. Marc; Reeder, Richard J.; Aarts, Dirk G. A. L.; Deringer, Volker L.; Goodwin, Andrew L. (Nature Portfolio, 2023-09-25)Amorphous calcium carbonate is an important precursor for biomineralization in marine organisms. Key outstanding problems include understanding the structure of amorphous calcium carbonate and rationalizing its metastability as an amorphous phase. Here we report high-quality atomistic models of amorphous calcium carbonate generated using state-of-the-art interatomic potentials to help guide fits to X-ray total scattering data. Exploiting a recently developed inversion approach, we extract from these models the effective Ca⋯Ca interaction potential governing the structure. This potential contains minima at two competing distances, corresponding to the two different ways that carbonate ions bridge Ca2+-ion pairs. We reveal an unexpected mapping to the Lennard-Jones–Gauss model normally studied in the context of computational soft matter. The empirical model parameters for amorphous calcium carbonate take values known to promote structural complexity. We thus show that both the complex structure and its resilience to crystallization are actually encoded in the geometrically frustrated effective interactions between Ca2+ ions. [Figure not available: see fulltext.]
- Nanocomposite structure of two-line ferrihydrite powder from total scatteringFunnell, Nicholas P.; Fulford, Maxwell F.; Inoue, Sayako; Kletetschka, Karel; Michel, F. Marc; Goodwin, Andrew L. (2020-02-21)Ferrihydrite is one of the most important iron-containing minerals on Earth. Yet determination of its atomic-scale structure has been frustrated by its intrinsically poor crystallinity. The key difficulty is that physically-different models can appear consistent with the same experimental data. Using X-ray total scattering and a nancomposite reverse Monte Carlo approach, we evaluate the two principal contending models-one a multi-phase system without tetrahedral iron(III), and the other a single phase with tetrahedral iron(III). Our methodology is unique in considering explicitly the complex nanocomposite structure the material adopts: namely, crystalline domains embedded in a poorly-ordered matrix. The multi-phase model requires unphysical structural rearrangements to fit the data, whereas the single-phase model accounts for the data straightforwardly. Hence the latter provides the more accurate description of the short- and intermediate-range order of ferrihydrite. We discuss how this approach might allow experiment-driven (in)validation of complex models for important nanostructured phases beyond ferrihydrite. Although a geologically important mineral, the atomic-scale structure of ferrihydrite remains unresolved. Here the authors combine X-ray total scattering and reverse Monto Carlo to evaluate the two principal contending models, explicitly considering the material's complex nanocomposite structure.
- A new method for in situ structural investigations of nano-sized amorphous and crystalline materials using mixed-flow reactorsHoeher, Alexandria; Mergelsberg, Sebastian T.; Borkiewicz, Olaf J.; Dove, Patricia M.; Michel, F. Marc (International Union of Crystallography, 2019-09-01)Structural investigations of amorphous and nanocrystalline phases forming in solution are historically challenging. Few methods are capable of in situ atomic structural analysis and rigorous control of the system. A mixed-flow reactor (MFR) is used for total X-ray scattering experiments to examine the short- and long-range structure of phases in situ with pair distribution function (PDF) analysis. The adaptable experimental setup enables data collection for a range of different system chemistries, initial supersaturations and residence times. The age of the sample during analysis is controlled by adjusting the flow rate. Faster rates allow for younger samples to be examined, but if flow is too fast not enough data are acquired to average out excess signal noise. Slower flow rates form older samples, but at very slow speeds particles settle and block flow, clogging the system. Proper background collection and subtraction is critical for data optimization. Overall, this MFR method is an ideal scheme for analyzing the in situ structures of phases that form during crystal growth in solution. As a proof of concept, high-resolution total X-ray scattering data of amorphous and crystalline calcium phosphates and amorphous calcium carbonate were collected for PDF analysis.
- Operando characterization and regulation of metal dissolution and redeposition dynamics near battery electrode surfaceZhang, Yuxin; Hu, Anyang; Xia, Dawei; Hwang, Sooyeon; Sainio, Sami; Nordlund, Dennis; Michel, F. Marc; Moore, Robert B.; Li, Luxi; Lin, Feng (Nature Portfolio, 2023-07)Mn dissolution has been a long-standing, ubiquitous issue that negatively impacts the performance of Mn-based battery materials. Mn dissolution involves complex chemical and structural transformations at the electrode–electrolyte interface. The continuously evolving electrode–electrolyte interface has posed great challenges for characterizing the dynamic interfacial process and quantitatively establishing the correlation with battery performance. In this study, we visualize and quantify the temporally and spatially resolved Mn dissolution/redeposition (D/R) dynamics of electrochemically operating Mn-containing cathodes. The particle-level and electrode-level analyses reveal that the D/R dynamics is associated with distinct interfacial degradation mechanisms at different states of charge. Our results statistically differentiate the contributions of surface reconstruction and Jahn–Teller distortion to the Mn dissolution at different operating voltages. Introducing sulfonated polymers (Nafion) into composite electrodes can modulate the D/R dynamics by trapping the dissolved Mn species and rapidly establishing local Mn D/R equilibrium. This work represents an inaugural effort to pinpoint the chemical and structural transformations responsible for Mn dissolution via an operando synchrotron study and develops an effective method to regulate Mn interfacial dynamics for improving battery performance.
- Preferred orientations of garnet porphyroblasts reveal previously cryptic templating during nucleationNagurney, Alexandra B.; Caddick, Mark J.; Pattison, David R.M.; Michel, F. Marc (Nature Research, 2021)Electron back scattered diffraction data of garnet crystals from the Nelson Aureole, British Columbia and the Mosher’s Island formation, Nova Scotia, reveals that 22 garnet crystals are all oriented with one of three crystal directions parallel to the trace of the foliation plane in thin section. Structural models suggest that these relationships are due to preferential garnet nucleation onto muscovite, with the alignment of repeating rows of Al octahedra and Si tetrahedra in each leading to inheritance of garnet orientation from the muscovite. These results highlight that epitaxial nucleation may be a prevalent process by which porphyroblast minerals nucleate during metamorphism and carry implications for the role that non-classic nucleation pathways play in the crystallization of metamorphic minerals, the distribution of porphyroblasts in metamorphic rocks, and, in cases in which nucleation is the rate limiting step for crystallization, the energetics of metamorphic reactions.
- Room-Temperature Intrinsic and Extrinsic Damping in Polycrystalline Fe Thin FilmsWu, Shuang; Smith, David A.; Nakarmi, Prabandha; Rai, Anish; Clavel, Michael; Hudait, Mantu K.; Zhao, Jing; Michel, F. Marc; Mewes, Claudia; Mewes, Tim; Emori, Satoru (2021-09-08)We examine room-temperature magnetic relaxation in polycrystalline Fe films. Out-of-plane ferromagnetic resonance (FMR) measurements reveal Gilbert damping parameters of $\approx$ 0.0024 for Fe films with thicknesses of 4-25 nm, regardless of their microstructural properties. The remarkable invariance with film microstructure strongly suggests that intrinsic Gilbert damping in polycrystalline metals at room temperature is a local property of nanoscale crystal grains, with limited impact from grain boundaries and film roughness. By contrast, the in-plane FMR linewidths of the Fe films exhibit distinct nonlinear frequency dependences, indicating the presence of strong extrinsic damping. To fit our in-plane FMR data, we have used a grain-to-grain two-magnon scattering model with two types of correlation functions aimed at describing the spatial distribution of inhomogeneities in the film. However, neither of the two correlation functions is able to reproduce the experimental data quantitatively with physically reasonable parameters. Our findings advance the fundamental understanding of intrinsic Gilbert damping in structurally disordered films, while demonstrating the need for a deeper examination of how microstructural disorder governs extrinsic damping.