Browsing by Author "Miska, Kate B."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Differential expression of intestinal nutrient transporters and host defense peptides in Eimeria maxima-infected Fayoumi and Ross chickensSu, S.; Miska, Kate B.; Fetterer, Raymond H.; Jenkins, Mark C.; Lamont, Susan J.; Wong, Eric A. (2018-12)Fayoumi chickens are believed to be more disease resistant compared to commercial broiler chickens. The objective of this study was to compare mRNA expression of intestinal nutrient transporters, digestive enzymes, and host defense peptides (HDP) between Eimeria maxima-challenged Fayoumi and Ross broiler chickens. At 21 d of age, Ross broilers and Fayoumi lines M5.1 and M15.2 were challenged with 1,000 E. maxima oocysts. Control birds were not challenged. Duodenum, jejunum, and ileum were sampled (n = 6) at 7 d post challenge. Gene expression was analyzed using relative quantification PCR. Data were analyzed by ANOVA and significance level was set at P< 0.05. There was numerical, but not statistically significant, differential weight gain depression for Ross (15%) and Fayoumi lines M5.1 (21%) and M15.2 (22%) and significant line-specific changes in gene expression. For nutrient transporters, there was downregulation of mRNA for the brush border membrane, amino acid transporters b(0,+) AT/rBAT, BoAT, and EAAT3 in different segments of the small intes-tine of Ross and both lines of Fayoumi chickens, indicating that E. maxima challenge likely caused a decrease in nutrient uptake. For HDP, there was downregulation of avian beta defensin (AvBD) 1, 6, 10, 12, and 13 mRNA in the jejunum of the 2 Fayoumi lines, but no change in the Ross broilers. In the duodenum, there was upregulation of AvBD10 mRNA in the Ross and both Fayoumi lines and additionally upregulation of AvBD11, 12, and 13 mRNA in only Fayoumi line M15.2. Liver expressed antimicrobial peptide 2 (LEAP2) mRNA was downregulated in the duodenum and jejunum of Ross and Fayoumi line M5.1 but not in Fayoumi line M15.2. The homeostatic, non-challenged levels of AvBD mRNA were greater in Fayoumi line M15.2 than Ross and Fayoumi line M5.1 in the duodenum and ileum. This study demonstrates tissueand genetic line-specific transcriptional responses to E. maxima, highlights novel potential candidate genes for response to coccidiosis, and confirms a role for several previously reported genes in response to coccidiosis.
- Expression of host defense peptides in the intestine of Eimeria-challenged chickensSu, S.; Dwyer, D. M.; Miska, Kate B.; Fetterer, Raymond H.; Jenkins, Mark C.; Wong, Eric A. (2017-07)Avian coccidiosis is caused by the intracellular protozoan Eimeria, which produces intestinal lesions leading to weight gain depression. Current control methods include vaccination and anticoccidial drugs. An alternative approach involves modulating the immune system. The objective of this study was to profile the expression of host defense peptides such as avian beta-defensins (AvBDs) and liver expressed antimicrobial peptide 2 (LEAP2), which are part of the innate immune system. The mRNA expression of AvBD family members 1, 6, 8, 10, 11, 12, and 13 and LEAP2 was examined in chickens challenged with either E. acervulina, E. maxima, or E. tenella. The duodenum, jejunum, ileum, and ceca were collected 7 d post challenge. In study 1, E. acervulina challenge resulted in down-regulation of AvBD1, AvBD6, AvBD10, AvBD11, AvBD12, and AvBD13 in the duodenum. E. maxima challenge caused down-regulation of AvBD6, AvBD10, and AvBD11 in the duodenum, down-regulation of AvBD10 in the jejunum, but up-regulation of AvBD8 and AvBD13 in the ceca. E. tenella challenge showed no change in AvBD expression in any tissue. In study 2, which involved challenge with only E. maxima, there was down-regulation of AvBD1 in the ileum, AvBD11 in the jejunum and ileum, and LEAP2 in all 3 segments of the small intestine. The expression of LEAP2 was further examined by in situ hybridization in the jejunum of chickens from study 2. LEAP2 mRNA was expressed similarly in the enterocytes lining the villi, but not in the crypts of control and Eimeria challenged chickens. The lengths of the villi in the Eimeria challenged chickens were less than those in the control chickens, which may in part account for the observed down-regulation of LEAP2 mRNA quantified by PCR. Overall, the AvBD response to Eimeria challenge was not consistent; whereas LEAP2 was consistently down-regulated, which suggests that LEAP2 plays an important role in modulating an Eimeria infection.
- Functional Characterization of the Avian Inflammatory Mediators Nod1, MIF and IL-22Kim, Sungwon (Virginia Tech, 2011-09-16)Inflammation can be initiated by an innate immune sensor, followed by activation of a signal mediator, resulting in control of immune response by a signal regulator. Mammalian nucleotide-binding oligomerization domain protein 1 (Nod1) and Nod2 initiate host innate immune response by recognition of specific bacterial molecules, resulting in the production of pro-inflammatory cytokines, chemokines, and anti-microbial peptides. A candidate sequence of chicken Nod1 (ChNod1) was identified with no current evidence of ChNod2. Stimulation of transiently overexpressed ChNod1 and its mutants with mammalian Nod-specific ligands was not conclusive of the function of ChNod1 most likely due to self-activation of ChNod1. In vitro studies showed no significant difference in expression of Nod1, its signaling molecules and pro-inflammatory cytokines in stimulated chicken mononuclear cells with synthetic ligands for mammalian Nod1 or Nod2. A signal mediator, macrophage migration inhibitory factor (MIF) inhibits the random migration of macrophages. Chemotaxis assay using recombinant ChMIF (rChMIF) revealed a substantial decrease in migration of macrophages. qRT-PCR analysis revealed that the presence of rChMIF enhanced levels of IL-1β and iNOS during monocytes stimulation with LPS. Additionally, Con A-stimulated lymphocytes exhibited enhanced IFN-γ and IL-2 transcripts in the presence of rChMIF. IL-22, which may act as a signal regulator, is an important effector of activated Th1 and Th17 as well as natural killer cells during inflammation. Recombinant ChIL-22 alone did not have an impact on chicken embryo kidney epithelial cells (CKECs); however, co-stimulation of CKECs with LPS and rChIL-22 enhanced the production of pro-inflammatory cytokines and anti-microbial peptides. Furthermore, rChIL-22 alone stimulated acute phase reactants in chicken embryo liver cells. These effects of rChIL-22 were abolished by addition of rChIL22 binding protein. Taken together, these results indicate an important role of ChIL-22 on epithelial cells and hepatocytes during inflammation. In this project, we identified and characterized the avian inflammatory mediators ChNod1, ChMIF, and ChIL-22. Studying each of their biological function in avian inflammation, especially under pathogenic challenges in epithelial tissues will provide a foundation for understanding the role of these inflammatory mediators in mucosal immunity.