Browsing by Author "Modi, Parthkumar A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Coupling a land surface model with a hydrodynamic model for regional flood risk assessment due to climate change: Application to the Susquehanna River near Harrisburg, PennsylvaniaModi, Parthkumar A.; Czuba, Jonathan A.; Easton, Zachary M. (2021-11-19)An increase in heavy precipitation associated with climate change has exacerbated flooding in the Eastern U.S. To assess regional flood risk with changing climatic conditions, we demonstrate the application of a novel hydrologic modeling framework that integrates climate projections with a coupled Noah-MP land surface model and a two-dimensional HEC-RAS hydrodynamic model. We employ this framework along a 41 km reach of the Susquehanna River near Harrisburg, Pennsylvania, where recent flood damages exceeded $2 billion (2011 Irene and Lee floods). Historical and future 30-year and 100-year peak-discharge estimates were compared to assess how flood risk might be altered due to climate change. Results indicate that precipitation increases from climate change do not always lead to increases in flood risk, because interplay of hydrological components in the watershed, which are considered by Noah-MP, largely controls flooding severity. However, climate change is expected to increase the severity of extreme events; if a 50-year flood (the recurrence interval of Tropical Storm Lee) occurred toward the end of the 21st century in the worst-case emission scenario, then flood volume would increase by 40% and flood extent by 15%, due to an increase in soil moisture from a wetter overall climate.
- Impacts of climate change on terrestrial hydrological components and crop water use in the Chesapeake Bay watershedModi, Parthkumar A.; Fuka, Daniel R.; Easton, Zachary M. (2021-06)This study assessed the impacts of climate change on terrestrial hydrological components and Crop Water Use (CWU) over the Chesapeake Bay watershed using a combination of Global Climate Models (GCMs) and a land surface model. To better understand the impacts of climate change on the hydrological cycle, long-term simulations of multiple earth system models from the Coupled Model Intercomparison Project (CMIP Phase 5) are statistically downscaled and bias-corrected using Multivariate Adaptive Constructed Analogs (MACA) scheme for use as model forcing. Precipitation indices from the twenty MACA-based GCMs are used to identify six best performing models. A mesoscale approach is developed, where CWU is estimated by accounting for the impacts of changing climate conditions and rising CO2 levels. Daily grid-based crop coefficients are derived from evapotranspiration data. The findings indicate a significant annual increase in precipitation (10 %) and temperature (+4.5 K) for the RCP 8.5 scenario towards the end of the 21st century. A significant reduction (13 % and 17 % respectively) in CWU is estimated for corn and soybeans, resulting from increased total precipitation and rising CO2 levels suppressing evapotranspiration. Our results indicate that even in a warmer regime, crop water use decreased due to rising CO2 concentrations due to climate change.