Browsing by Author "Monson, Melissa S."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Genetic lines respond uniquely within the chicken thymic transcriptome to acute heat stress and low dose lipopolysaccharideMonson, Melissa S.; Van Goor, Angelica G.; Persia, Michael E.; Rothschild, Max F.; Schmidt, Carl J.; Lamont, Susan J. (Springer Nature, 2019-09-20)Exposure to high temperatures is known to impair immune functions and disease resistance of poultry. Characterizing changes in the transcriptome can help identify mechanisms by which immune tissues, such as the thymus, respond to heat stress. In this study, 22-day-old chickens from two genetic lines (a relatively resistant Fayoumi line and a more susceptible broiler line) were exposed to acute heat stress (35 degrees C) and/or immune simulation with lipopolysaccharide (LPS; 100 mu g/kg). Transcriptome responses in the thymus were identified by RNA-sequencing (RNA-seq). Expression of most genes was unaffected by heat and/or LPS in the Fayoumi line, whereas these treatments had more impact in the broiler line. Comparisons between the broiler and Fayoumi transcriptomes identified a large number of significant genes both at homeostasis and in response to treatment. Functional analyses predicted that gene expression changes impact immune responses, apoptosis, cell activation, migration, and adhesion. In broilers, acute heat stress changed thymic expression responses to LPS and could impact thymocyte survival and trafficking, and thereby contribute to the negative effects of high temperatures on immune responses. Identification of these genes and pathways provides a foundation for testing targets to improve disease resistance in heat-stressed chickens.
- Immunomodulatory effects of heat stress and lipopolysaccharide on the bursal transcriptome in two distinct chicken linesMonson, Melissa S.; Van Goor, Angelica G.; Ashwell, Christopher M.; Persia, Michael E.; Rothschild, Max F.; Schmidt, Carl J.; Lamont, Susan J. (2018-08-30)Background Exposure to heat stress suppresses poultry immune responses, which can increase susceptibility to infectious diseases and, thereby, intensify the negative effects of heat on poultry welfare and performance. Identifying genes and pathways that are affected by high temperatures, especially heat-induced changes in immune responses, could provide targets to improve disease resistance in chickens. This study utilized RNA-sequencing (RNA-seq) to investigate transcriptome responses in the bursa of Fabricius, a primary immune tissue, after exposure to acute heat stress and/or subcutaneous immune stimulation with lipopolysaccharide (LPS) in a 2 × 2 factorial design: Thermoneutral + Saline, Heat + Saline, Thermoneutral + LPS and Heat + LPS. All treatments were investigated in two chicken lines: a relatively heat- and disease-resistant Fayoumi line and a more susceptible broiler line. Results Differential expression analysis determined that Heat + Saline had limited impact on gene expression (N = 1 or 63 genes) in broiler or Fayoumi bursa. However, Thermoneutral + LPS and Heat + LPS generated many expression changes in Fayoumi bursa (N = 368 and 804 genes). Thermoneutral + LPS was predicted to increase immune-related cell signaling and cell migration, while Heat + LPS would activate mortality-related functions and decrease expression in WNT signaling pathways. Further inter-treatment comparisons in the Fayoumi line revealed that heat stress prevented many of the expression changes caused by LPS. Although fewer significant expression changes were observed in the broiler bursa after exposure to Thermoneutral + LPS (N = 59 genes) or to Heat + LPS (N = 146 genes), both treatments were predicted to increase cell migration. Direct comparison between lines (broiler to Fayoumi) confirmed that each line had distinct responses to treatment. Conclusions Transcriptome analysis identified genes and pathways involved in bursal responses to heat stress and LPS and elucidated that these effects were greatest in the combined treatment. The interaction between heat and LPS was line dependent, with suppressive expression changes primarily in the Fayoumi line. Potential target genes, especially those involved in cell migration and immune signaling, can inform future research on heat stress in poultry and could prove useful for improving disease resistance.
- Response of the Hepatic Transcriptome to Aflatoxin B-1 in Domestic Turkey (Meleagris gallopavo)Monson, Melissa S.; Settlage, Robert E.; McMahon, Kevin W.; Mendoza, Kristelle M.; Rawal, Sumit; El-Nezami, Hani S.; Coulombe, Roger A.; Reed, Kent M. (PLOS, 2014-06-30)Dietary exposure to aflatoxin B1 (AFB1) is detrimental to avian health and leads to major economic losses for the poultry industry. AFB1 is especially hepatotoxic in domestic turkeys (Meleagris gallopavo), since these birds are unable to detoxify AFB1 by glutathione-conjugation. The impacts of AFB1 on the turkey hepatic transcriptome and the potential protection from pretreatment with a Lactobacillus-based probiotic mixture were investigated through RNA-sequencing. Animals were divided into four treatment groups and RNA was subsequently recovered from liver samples. Four pooled RNA-seq libraries were sequenced to produce over 322 M reads totaling 13.8 Gb of sequence. Approximately 170,000 predicted transcripts were de novo assembled, of which 803 had significant differential expression in at least one pair-wise comparison between treatment groups. Functional analysis linked many of the transcripts significantly affected by AFB1 exposure to cancer, apoptosis, the cell cycle or lipid regulation. Most notable were transcripts from the genes encoding E3 ubiquitin-protein ligase Mdm2, osteopontin, S-adenosylmethionine synthase isoform type-2, and lipoprotein lipase. Expression was modulated by the probiotics, but treatment did not completely mitigate the effects of AFB1. Genes identified through transcriptome analysis provide candidates for further study of AFB1 toxicity and targets for efforts to improve the health of domestic turkeys exposed to AFB1.
- Transcriptome Response of Liver and Muscle in Heat-Stressed Laying HensWang, Yan; Jia, Xinzheng; Hsieh, John C. F.; Monson, Melissa S.; Zhang, Jibin; Shu, Dingming; Nie, Qinghua; Persia, Michael E.; Rothschild, Max F.; Lamont, Susan J. (MDPI, 2021-02-10)Exposure to high ambient temperature has detrimental effects on poultry welfare and production. Although changes in gene expression due to heat exposure have been well described for broiler chickens, knowledge of the effects of heat on laying hens is still relatively limited. In this study, we profiled the transcriptome for pectoralis major muscle (n = 24) and liver (n = 24), during a 4-week cyclic heating experiment performed on layers in the early phase of egg production. Both heat-control and time-based contrasts were analyzed to determine differentially expressed genes (DEGs). Heat exposure induced different changes in gene expression for the two tissues, and we also observed changes in gene expression over time in the control animals suggesting that metabolic changes occurred during the transition from onset of lay to peak egg production. A total of 73 DEGs in liver were shared between the 3 h heat-control contrast, and the 4-week versus 3 h time contrast in the control group, suggesting a core set of genes that is responsible for maintenance of metabolic homeostasis regardless of the physiologic stressor (heat or commencing egg production). The identified DEGs improve our understanding of the layer’s response to stressors and may serve as targets for genetic selection in the future to improve resilience.