Browsing by Author "Montgomery, Michael E."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Ancient and modern colonization of North America by hemlock woolly adelgid, Adelges tsugae (Hemiptera: Adelgidae), an invasive insect from East AsiaHavill, Nathan P.; Shiyake, Shigehiko; Galloway, Ashley Lamb; Foottit, Robert G.; Yu, Guoyue; Paradis, Annie; Elkinton, Joseph S.; Montgomery, Michael E.; Sano, Masakazu; Caccone, Adalgisa (2016-05)Hemlock woolly adelgid, Adelges tsugae, is an invasive pest of hemlock trees (Tsuga) in eastern North America. We used 14 microsatellites and mitochondrial COI sequences to assess its worldwide genetic structure and reconstruct its colonization history. The resulting information about its life cycle, biogeography and host specialization could help predict invasion by insect herbivores. We identified eight endemic lineages of hemlock adelgids in central China, western China, Ulleung Island (South Korea), western North America, and two each in Taiwan and Japan, with the Japanese lineages specializing on different Tsuga species. Adelgid life cycles varied at local and continental scales with different sexual, obligately asexual and facultatively asexual lineages. Adelgids in western North America exhibited very high microsatellite heterozygosity, which suggests ancient asexuality. The earliest lineages diverged in Asia during Pleistocene glacial periods, as estimated using approximate Bayesian computation. Colonization of western North America was estimated to have occurred prior to the last glacial period by adelgids directly ancestral to those in southern Japan, perhaps carried by birds. The modern invasion from southern Japan to eastern North America caused an extreme genetic bottleneck with just two closely related clones detected throughout the introduced range. Both colonization events to North America involved host shifts to unrelated hemlock species. These results suggest that genetic diversity, host specialization and host phylogeny are not predictive of adelgid invasion. Monitoring non-native sentinel host trees and focusing on invasion pathways might be more effective methods of preventing invasion than making predictions using species traits or evolutionary history.
- Biological Studies and Evaluation of Scymnus Coniferarum, a Predator of Hemlock Woolly Adelgid from Western North AmericaDarr, Molly Norton (Virginia Tech, 2017-06-07)The hemlock woolly adelgid (HWA), Adelges tsugae Annand, is an invasive pest of eastern hemlock, Tsuga canadensis (L.) Carriere and Carolina hemlock Tsuga caroliniana Englem. in the eastern United States. A newly reported beetle predator for HWA, Scymnus (Pullus) coniferarum Crotch (Coleoptera: Cocinellidae) preys on the pest in the western United States, and was approved for release in the eastern United States for the control of HWA. This research investigated the viability of S. coniferarum as a biological control agent of A. tsugae in the eastern United States, as well as the ecological dynamics between S. coniferarum and host prey species in its native range of western North America. In objective one, S. coniferarum predation, reproductive potential, and survival were evaluated in field-cages on adelgid infested T. canadensis in southwestern Virginia. Adult S. coniferarum fed on both generations and all life stages of A. tsugae at rates comparable to other adelgid-specific predators, and survived for extended periods of time in the field. In objective two, host-range tests for S. coniferarum were conducted in a series of no-choice and paired-choice feeding, oviposition, and development studies. Scymnus coniferarum adults fed on all adelgid species, and completed development on HWA and Adelges piceae Ratz. Scymmnus coniferarum oviposition was extremely low. In the final objective, Douglas-fir, Pseudotusga menziesii Mirb., Shore pine, Pinus contorta Dougl., western white pine, Pinus monticola Dougl., and western hemlock, Tsuga heterophylla (Raf.) Sarg. host tree species were sampled in Tacoma, Washington to investigate the life history of S. coniferarum and associated adelgid prey species in the western United States. Scymnus coniferarum adults were found on both pine species, Douglas fir, and western hemlock, and seemed to move between host tree species seasonally. Each host tree supports a different adelgid species, and a limited diet of strictly HWA in host-range tests could have contributed to low oviposition rates. This study suggested that S. coniferarum is a voracious predator of HWA in the field and laboratory. However, S. coniferarum laid very few eggs in laboratory studies, and zero eggs were recovered in field-cage analyses. This suggested that S. coniferarum may rely on multiple adelgid species to reproduce and establish in the eastern United States.
- Competitive interactions among two specialist predators and a generalist predator of hemlock woolly adelgid, Adelges tsugae Annand (Hemiptera: Adelgidae)Flowers, Robbie Wayne (Virginia Tech, 2006-04-10)Competitive interactions among two specialist predators, Laricobius nigrinus Fender (Coleoptera: Derodontidae) and Sasajiscymnus tsugae Sasaji and McClure (Coleoptera: Coccinellidae), and a generalist predator, Harmonia axyridis Pallas (Coleoptera: Coccinellidae), of hemlock woolly adelgid were evaluated using laboratory, field and video studies. The two specialist predators are part of a biological control program for A. tsugae, and the potential for competition among these species and previously established generalist predators is unknown. In laboratory studies of predator groups in Petri dish assays, the only significant negative effects from competition occurred among conspecifics, resulting in reduced net egg production by L. nigrinus and H. axyridis and reduced feeding by H. axyridis. In contrast, heterospecific combinations showed non-interference. In longer duration field studies of predator groups, held in branch enclosures, predator survival and feeding were not significantly affected by additional predators. Net reproduction was again significantly reduced by conspecifics, while heterospecifics showed non-interference for all predator responses. All predators reduced the number of A. tsugae nymphs of the next generation relative to no-predator controls; however, L. nigrinus had much greater impact overall due to the large number of progeny produced. Video studies revealed that predator behavior varied qualitatively and quantitatively by species, and did not appear to be coordinated temporally or spatially. All species exhibited continuous activity patterns that were punctuated by longer periods of rest. The specialist predators were more selective of feeding and oviposition sites, and rested at more concealed locations than H. axyridis. Conspecifics significantly altered the time allocated to specific behaviors for L. nigrinus and H. axyridis, resulting in reduced predator effectiveness due to increased searching and decreased feeding and oviposition. All predator groups maintained a high degree of spatial separation relative to assay size, suggesting that chemical or tactile cues may be used to regulate their distributions. Overall, these studies suggest that the three predator species will be compatible in this system. Management implications include using multiple-predator species combinations over single-species for biological control of A. tsugae and implementing low-density releases to reduce the potential negative effects of intraspecific competition.
- Pre-release Evaluation of Laricobius osakensis Montgomery and Shiyake (Coleoptera: Derodontidae), a Potential Biological Control Agent for the Hemlock Woolly Adelgid, Adelges tsugae Annand (Hemiptera: Adelgidae), in the Eastern United StatesMarques Cota Vieira, Ligia Maria (Virginia Tech, 2013-05-03)Hemlock woolly adelgid, Adelges tsugae Annand, is an invasive pest threatening eastern (Tsuga canadensis (L.) Carrière) and Carolina hemlock (T. caroliniana Englem.) forests in the eastern US. A new predator, Laricobius osakensis Montgomery and Shiyake, has been found in association with A. tsugae in Japan. Laricobius osakensis was evaluated in a series of pre-release studies to assess its potential as a biological control agent for A. tsugae. Host-range studies indicated that L. osakensis is a specific predator that feeds predominantly and reproduces only on A. tsugae. The functional response "prey consumption changes in response to changes in prey density" was similar for both L. osakensis and Laricobius nigrinus Fender adults. However, L. osakensis had a higher numerical response"changes in oviposition in response to changes in prey density"than L. nigrinus. Laricobius osakensis larvae had a higher functional response than L. nigrinus larvae. Laricobius osakensis\' higher numerical and functional response indicates that this species can potentially be more effective than L. nigrinus. In the evaluation of L. osakensis in sleeve cages in the field from December to April high rates of adult survival, feeding, and reproduction were found. A pair of predators in a cage killed on average five adelgids/day. Peak oviposition occurred in March and April. Larvae from eggs placed in the cages reached maturity in 28-50 days, depending on the season, and only 6.7 % died before reaching maturity. Laricobius osakensis was able to survive, feed, develop, and reproduce in USDA cold-hardiness zones 5b and 6a of southwest Virginia. Behavior of L. osakensis and L. nigrinus was qualitatively similar but varied quantitatively. Laricobius osakensis was more active and had a lower association with T. canadensis. Interactions between species were minimal and not detrimental to either. Intrasexual copulation attempts were observed between males and to a lesser extent between females; however, intrasexual interactions were less frequent than intersexual interactions between the two species. Otherwise activity, including oviposition, was not altered by the presence of the other species. These studies indicate that L. osakensis has the potential to be a valuable addition to the natural enemies complex against A. tsugae.