Browsing by Author "Morton, Paul D."
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- Cross-Talk and Subset Control of Microglia and Associated Myeloid Cells in Neurological DisordersMills, Jatia; Ladner, Liliana; Soliman, Eman; Leonard, John; Morton, Paul D.; Theus, Michelle H. (MDPI, 2022-10-25)Neurological disorders are highly prevalent and often lead to chronic debilitating disease. Neuroinflammation is a major driver across the spectrum of disorders, and microglia are key mediators of this response, gaining wide acceptance as a druggable cell target. Moreover, clinical providers have limited ability to objectively quantify patient-specific changes in microglia status, which can be a predictor of illness and recovery. This necessitates the development of diagnostic biomarkers and imaging techniques to monitor microglia-mediated neuroinflammation in coordination with neurological outcomes. New insights into the polarization status of microglia have shed light on the regulation of disease progression and helped identify a modifiable target for therapeutics. Thus, the detection and monitoring of microglia activation through the inclusion of diagnostic biomarkers and imaging techniques will provide clinical tools to aid our understanding of the neurologic sequelae and improve long-term clinical care for patients. Recent achievements demonstrated by pre-clinical studies, using novel depletion and cell-targeted approaches as well as single-cell RNAseq, underscore the mechanistic players that coordinate microglial activation status and offer a future avenue for therapeutic intervention.
- Early influences of microbiota on white matter development in germ-free pigletsAhmed, Sadia; Travis, Sierrah; Díaz-Bahamonde, Francisca; Porter, Demisha; Henry, Sara; Ravipati, Aditya; Booker, Aryn; Ding, Hanzhang; Ju, Jing; Ramesh, Ashwin; Pickrell, Alicia M.; Wang, Maosen; LaConte, Stephen M.; Howell, Brittany R.; Yuan, Lijuan; Morton, Paul D. (Frontiers, 2021-12-27)Abnormalities in the prefrontal cortex (PFC), as well as the underlying white matter (WM) tracts, lie at the intersection of many neurodevelopmental disorders. The influence of microorganisms on brain development has recently been brought into the clinical and research spotlight as alterations in commensal microbiota are implicated in such disorders, including autism spectrum disorders, schizophrenia, depression, and anxiety via the gut-brain axis. In addition, gut dysbiosis is common in preterm birth patients who often display diffuse WM injury and delayed WM maturation in critical tracts including those within the PFC and corpus callosum. Microbial colonization of the gut aligns with ongoing postnatal processes of oligodendrogenesis and the peak of brain myelination in humans; however, the influence of microbiota on gyral WM development remains elusive. Here, we develop and validate a neonatal germ-free swine model to address these issues, as piglets share key similarities in WM volume, developmental trajectories, and distribution to humans. We find significant region-specific reductions, and sexually dimorphic trends, in WM volume, oligodendrogenesis, and mature oligodendrocyte numbers in germ-free piglets during a key postnatal epoch of myelination. Our findings indicate that microbiota plays a critical role in promoting WM development during early life when the brain is vulnerable to environmental insults that can result in an array of disabilities manifesting later in life.
- An Implantable Micro-Caged Device for Direct Local Delivery of AgentsSon, Alexander I.; Opfermann, Justin D.; Mccue, Caroline; Ziobro, Julie; Abrahams, John H., III; Jones, Katherine; Morton, Paul D.; Ishii, Seiji; Oluigbo, Chima; Krieger, Axel; Liu, Judy S.; Hashimoto-Torii, Kazue; Torii, Masaaki (Springer Nature, 2017-12-15)Local and controlled delivery of therapeutic agents directly into focally afflicted tissues is the ideal for the treatment of diseases that require direct interventions. However, current options are obtrusive, difficult to implement, and limited in their scope of utilization; the optimal solution requires a method that may be optimized for available therapies and is designed for exact delivery. To address these needs, we propose the Biocage, a customizable implantable local drug delivery platform. The device is a needle-sized porous container capable of encasing therapeutic molecules and matrices of interest to be eluted into the region of interest over time. The Biocage was fabricated using the Nanoscribe Photonic Professional GT 3D laser lithography system, a two-photon polymerization (2PP) 3D printer capable of micron-level precision on a millimeter scale. We demonstrate the build consistency and features of the fabricated device; its ability to release molecules; and a method for its accurate, stable delivery in mouse brain tissue. The Biocage provides a powerful tool for customizable and precise delivery of therapeutic agents into target tissues.
- Mechanism and Function of TrkB.T1 Astrocyte ExpressionWei, Xiaoran (Virginia Tech, 2024-07-23)Astrocytes are the most abundant glial cell type in the central nervous system (CNS). Most astrocytes are born during the early postnatal period in the rodent brain and mature alongside neurons, demonstrating remarkable morphological structural complexity, and attaining maturity in the second postnatal month. We have shown that astrocyte morphogenesis is regulated in part by brain-derived neurotrophic factor (BDNF) via signaling through the truncated tropomyosin receptor kinase B (TrkB) receptor. TrkB is the primary receptor for BDNF which is broadly expressed and released by neurons in developing and mature brain. TrkB has two predominant isoforms expressed in central nervous system (CNS), the full length TrkB (TrkB.FL) receptor and truncated TrkB (TrkB.T1) receptor. We recently demonstrated in the adult rodent cortex that TrkB.T1 is largely specific to astrocytes and over 90% of all Ntrk2 expression in astrocytes attributed to TrkB.T1. In contrast TrkB.FL is the predominant isoform expressed by neurons. It is not known how astrocytes and neurons regulate their specific TrkB isoform expression, although previous studies in bulk frontal cortical tissue from human postmortem samples indicate that DNA methylation level in promoter region and 3' UTR region of NTRK2 is negatively correlated with TrkB.T1 expression levels, but not with TrkB.FL expression. The mechanism of TrkB.T1 isoform-specific expression and the role of TrkB.T1 in astrocyte developmental process are unknown. In this dissertation, we aimed to determine in the DNA methylation contributes to isoform specific expression of TrkB.T1. We thus profiled the 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in neurons, astrocytes and microglia utilizing nanopore sequencing. We identified robust differences in cell-type specific TrkB isoform expression is associated with significantly different 5mC and 5hmC patterns in neurons and astrocytes. Further, we investigated the role of TrkB.T1 in cortical astrocyte developmental processes and astrocyte function during early postnatal development (postnatal day (P) 8, P14, P28 and P60). RNA sequencing of TrkB.T1 deficient astrocytes isolated at these timepoints revealed aberrant gene expression in astrocyte maturation, while pathway analysis indicated disruptions in synapse organization, neurotransmitter transport and exocytotic processes. Subsequent functional secretory proteomics highlighted disruptions in metabolism and lipid regulation, particularly cholesterol transport, suggesting potential implications for synapse formation. We observed dysregulated spine density in the motor and somatosensory cortices from TrkB.T1-deficient astrocytes relative to control astrocytes. These findings suggest that TrkB.T1 deficiency adversely affects normal astrocyte development, which in turn affects neuronal synapse development. This study provides new insights into the role of BDNF/TrkB.T1 signaling in CNS development and lays the groundwork for evaluating astrocyte BDNF/TrkB.T1 signaling in neurological diseases.
- Modeling Neural Stem Cell Dynamics in Congenital Heart DiseasePorter, Demisha Donei Lasha (Virginia Tech, 2023-06-28)Neural stem/progenitor cells (NSPCs) play a crucial part in the evolutionary development of the human neocortex. During early postnatal development, NSPCs give rise to immature neurons called neuroblasts within the subventricular zone (SVZ) that utilize unique migratory streams to integrate widely in the cerebral cortex. However, the cellular mechanisms enabling these unique migratory routes through the compacted cellular landscape remain unknown. Special emphasis has been placed on understanding the susceptibility of these brain regions to severe conditions such as congenital heart disease (CHD), resulting in poor neurological outcomes. Owing to its reminiscent complexity to humans, the neonatal piglet (Sus scrofa domesticus), which possesses a highly evolved gyrencephalic neocortex and an expansive outer SVZ, provides a powerful translational model system for the study of how heart dysfunction impacts cortical development from both a modern and evolutionary perspective. The present study provides a detailed characterization of neuroblast migration along their associate substrates in the piglet cortex under normal physiological conditions and how reduced oxygenation (i.e., hypoxia) can impact their vulnerability and/or resistance to injury during a critical period of postnatal development. In this thesis, I investigated the spatiotemporal distribution and developmental origin of SVZ-derived neuroblasts. Following BrdU tracing, multiplex labeling, and confocal microscopy, I show that the porcine brain contains populations of newly generated (BrdU+/DCX+) neurons in the prefrontal cortex that are produced postnatally. Regional analyses using immunohistochemical staining for doublecortin (DCX), a marker expressed by immature neurons, revealed that DCX+ clusters co-express markers of neuronal cell migration (PSA-NCAM), GABAergic interneuron marker (GABA+), and specific transcription factors (SCGN+SP8+) associated with the caudal- and lateral ganglionic eminence progenitor domains in the ventral forebrain. Moreover, I found that DCX+ neuroblasts are encased by astrocytic processes and tightly associated with blood vessels in the SVZ. Additionally, this thesis describes the use of chronic hypoxia as a model to profile neuroblast migration along associated substrates in pathological conditions related to CHD. Together, this work serves as a framework for the functional utilization of the neonatal piglet to understand the impact of substrate-dependent neuronal migration on brain maturation and neurodevelopmental diseases.
- Neuroblast migration along cellular substrates in the developing porcine brainPorter, Demisha D. L.; Henry, Sara N.; Ahmed, Sadia; Rizzo, Amy L.; Makhlouf, Rita; Gregg, Collin; Morton, Paul D. (Cell Press, 2022-09)In the past decade it has become evident that neuroblasts continue to supply the human cortex with interneurons via unique migratory streams shortly following birth. Owing to the size of the human brain, these newborn neurons must migrate long distances through complex cellular landscapes to reach their final locations. This process is poorly understood, largely because of technical difficulties in acquiring and studying neurotypical postmortem human samples along with diverging developmental features of well-studied mouse models. We reasoned that migratory streams of neuroblasts utilize cellular substrates, such as blood vessels, to guide their trek from the subventricular zone to distant cortical targets. Here, we evaluate the association between young interneuronal migratory streams and their preferred cellular substrates in gyrencephalic piglets during the developmental equivalent of human birth, infancy, and toddlerhood.
- The Non-canonical Function and Regulation of TBK1 in the Cell CyclePaul, Swagatika (Virginia Tech, 2023-10-11)Protein kinases play essential roles in orchestrating almost every step during mitosis. Aberrant kinase activity often leads to errors in the cell cycle progression which consequently becomes the underlying cause for developmental defects or abnormal cell proliferation leading to cancer. Tank Binding Kinase 1 (TBK1) is overexpressed in certain cancer types and is activated on the centrosomes during mitosis. Loss of TBK1 impairs cell division resulting in growth defects and the accumulation of multinucleated cells. Therefore, proper activation and localization of TBK1 are essential for mitotic progression. Yet, the upstream regulation of TBK1 and the function of activated TBK1 on the centrosomes is unknown. Also, the cause and consequences of overexpression of TBK1 in cancers remain to be explored. Activation of TBK1 depends on its binding to an adaptor protein which induces a conformational change leading to trans autophoshorylation on serine 172 of its kinase domain. We identified that an established innate immune response protein, NAK Associated Protein1 (NAP1/AZI2), is the adaptor required for binding and activating TBK1 during mitosis. Loss of either NAP1 or TBK1 results in the accumulation of binucleated and multinucleated cells, possibly due to several mitotic and cytokinetic defects seen in these knockout (KO) cells. We establish NAP1 as a cell cycle regulated protein which colocalizes with activated TBK1 on the centrosomes during mitosis. Furthermore, by performing an unbiased quantitative phosphoproteomics analysis during mitosis, the substrates discovered reveal that TBK1 also regulates other known cell cycle regulating kinases such as Aurora A and Aurora B. TBK1 is also an established autophagy protein and since the autophagy machinery is often impaired or remodeled to facilitate rapid cell division, we evaluated the underlying connection between TBK1 activation and autophagy. The data shows that cells lacking the essential autophagy proteins FIP200 or ATG9A exhibit overactivation and mislocalization of TBK1. By using both genetic and pharmacological inhibition of autophagy processes, we found that impaired autophagy leads to a significantly higher number of micronuclei – a hallmark for tumorigenesis that correlates with defects in mitosis and cytokinesis. Taken together our work has uncovered a novel function for the NAP1-TBK1 complex during mitosis and establishes that overactivation and mislocalization of TBK1 is a direct consequence of impaired autophagy which causes micronuclei formation.