Browsing by Author "Mozzoni, Leandro"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Genome-wide association analysis of sucrose and alanine contents in edamame beansWang, Zhibo; Yu, Dajun; Morota, Gota; Dhakal, Kshitiz; Singer, William; Lord, Nilanka; Huang, Haibo; Chen, Pengyin; Mozzoni, Leandro; Li, Song; Zhang, Bo (Frontiers, 2023-02-03)The sucrose and Alanine (Ala) content in edamame beans significantly impacts the sweetness flavor of edamame-derived products as an important attribute to consumers' acceptance. Unlike grain-type soybeans, edamame beans are harvested as fresh beans at the R6 to R7 growth stages when beans are filled 80-90% of the pod capacity. The genetic basis of sucrose and Ala contents in fresh edamame beans may differ from those in dry seeds. To date, there is no report on the genetic basis of sucrose and Ala contents in the edamame beans. In this study, a genome-wide association study was conducted to identify single nucleotide polymorphisms (SNPs) related to sucrose and Ala levels in edamame beans using an association mapping panel of 189 edamame accessions genotyped with a SoySNP50K BeadChip. A total of 43 and 25 SNPs was associated with sucrose content and Ala content in the edamame beans, respectively. Four genes (Glyma.10g270800, Glyma.08g137500, Glyma.10g268500, and Glyma.18g193600) with known effects on the process of sucrose biosynthesis and 37 novel sucrose-related genes were characterized. Three genes (Gm17g070500, Glyma.14g201100 and Glyma.18g269600) with likely relevant effects in regulating Ala content and 22 novel Ala-related genes were identified. In addition, by summarizing the phenotypic data of edamame beans from three locations in two years, three PI accessions (PI 532469, PI 243551, and PI 407748) were selected as the high sucrose and high Ala parental lines for the perspective breeding of sweet edamame varieties. Thus, the beneficial alleles, candidate genes, and selected PI accessions identified in this study will be fundamental to develop edamame varieties with improved consumers' acceptance, and eventually promote edamame production as a specialty crop in the United States.
- 'VT Sweet': A vegetable soybean cultivar for commercial edamame production in the mid-Atlantic USAZhang, Bo; Lord, Nilanka; Kuhar, Thomas P.; Duncan, Susan E.; Huang, Haibo; Ross, W. Jeremy; Rideout, Steven L.; Arancibia, Ramon A.; Reiter, Mark S.; Li, Song; Chen, Pengyin; Mozzoni, Leandro; Gillen, Anne; Yin, Yun; Neill, Clinton L.; Carneiro, Renata C. V.; Yu, Dajun; Sutton, Kemper L.; Li, Xiaoying; Wang, Zhibo; Buss, Glenn (2021-10-26)Commercially viable cultivars adapted to U.S. production regions that meet consumer acceptance criteria are desperately needed by the growing domestic edamame industry. Here, we report the development and release of 'VT Sweet' (Reg. no. CV-542, PI 699062), the first vegetable soybean [Glycine max (L.) Merr.] cultivar released by Virginia Tech. VT Sweet is a late maturity group (MG) V cultivar (relative maturity 5.6, 129 d to harvest) with determinate growth habit, purple flowers, gray pubescence, tan pod wall, and yellow hila. VT Sweet has superior characteristics for edamame such as large pod size (13.9 g/10 pods; 40.4 mm long, 11.4 mm wide, and 7.6 mm thick) and low one-bean pod proportion (15%), as well as low pod pubescence density (359 hairs/2.4 cm(2)). VT Sweet also showed high overall consumer acceptability (6.0 +/- 1.7; 9 = like extremely) and favorable tolerance to native pests. When compared with the commercial edamame check 'UA Kirksey', VT Sweet showed 102% of the check yield, a higher average field emergence rate (74.9 vs. 68.1%), and comparable consumer acceptability (6.05 vs. 6.10). Therefore, VT Sweet is an ideal cultivar for growers who are interested in commercial edamame production in the mid-Atlantic region of the United States.