Browsing by Author "Mukhopadhyay, Abhishek"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Investigating the effect of charge hydration asymmetry and incorporating it in continuum solvation frameworkMukhopadhyay, Abhishek (Virginia Tech, 2015-03-17)One of the essential requirements of biomolecular modeling is an accurate description of water as a solvent. The challenge is to make this description computationally facile -- reasonably fast, simple, robust and easy to incorporate into existing software packages, yet accurate. The most rigorous procedure to model the effect of aqueous solvent is to explicitly model every water molecule in the system. For many practical applications, this approach is computationally too intense, as the number of required water atoms is on an average at least one order of magnitude larger than the number of atoms of the molecule of interest. Implicit solvent models, in which solvent molecules are replaced by a continuous dielectric, have become a popular alternative to explicit solvent methods. However, implicit solvation models often lack various microscopic details which are crucial for accuracy. One such missing effect that is currently missing from popular implicit models is the so called effect of charge hydration asymmetry (CHA). The missing effect of charge hydration asymmetry -- the asymmetric response of water upon the sign of solute charge -- manifests a characteristic, strong dependence of solvation free energies on the sign of solute charge. Here, we incorporate this missing effect into the continuum solvation framework via the conceptually simplest Born equation and also in the generalized Born model. We identify the key electric multipole moments of model water molecules critical for the various degrees of CHA effect observed in studies based on molecular dynamics simulations using different rigid water models. We then use this gained insight to incorporate CHA first into the Born model, and then into the generalized Born model. The proposed framework significantly improves accuracy of the hydration free energy estimates tested on a comprehensive set of varied molecular solutes -- monovalent and divalent ions, small drug-like molecules, charged and uncharged amino acid dipeptides, and small proteins. We finally develop a methodology to resolve the issue with unacceptably large uncertainty that stems from a variety of fundamental and technical difficulties in experimental quantification of CHA from charged solutes. Using the proposed corrections in the continuum framework, we untangle the charge-asymmetric response of water from its symmetric response, and further circumvent the difficulties by extracting accurate estimate propensity of water to cause CHA from accurate experimental hydration free energies of neutral polar molecules. We show that the asymmetry in water's response is strong, about 50% of the symmetric response.
- Strongly Bent Double-Stranded DNA: Reconciling Theory and ExperimentDrozdetski, Aleksander V.; Mukhopadhyay, Abhishek; Onufriev, Alexey V. (2019-11-29)The strong bending of polymers is poorly understood. We propose a general quantitative framework of polymer bending that includes both the weak and strong bending regimes on the same footing, based on a single general physical principle. As the bending deformation increases beyond a certain (polymer-specific) point, the change in the convexity properties of the effective bending energy of the polymer makes the harmonic deformation energetically unfavorable: in this strong bending regime the energy of the polymer varies linearly with the average bending angle as the system follows the convex hull of the deformation energy function. For double-stranded DNA, the effective bending deformation energy becomes non-convex for bends greater than similar to 2 degrees per base-pair, equivalent to the curvature of a closed circular loop of similar to 160 base pairs. A simple equation is derived for the polymer loop energy that covers both the weak and strong bending regimes. The theory shows quantitative agreement with recent DNA cyclization experiments on short DNA fragments, while maintaining the expected agreement with experiment in the weak bending regime. Counter-intuitively, cyclization probability (j-factor) of very short DNA loops is predicted to increase with decreasing loop length; the j-factor reaches its minimum for loops of similar or equal to 45 base pairs. Atomistic simulations reveal that the attractive component of the short-range Lennard-Jones interaction between the backbone atoms can explain the underlying non-convexity of the DNA effective bending energy, leading to the linear bending regime. Applicability of the theory to protein-DNA complexes, including the nucleosome, is discussed.
- Systematic Reverse Engineering of Network Topologies: A Case Study of Resettable Bistable Cellular ResponsesMondal, Debasish; Dougherty, Edward T.; Mukhopadhyay, Abhishek; Carbo, Adria; Yao, Guang; Xing, Jianhua (Public Library of Science, 2014-08-29)A focused theme in systems biology is to uncover design principles of biological networks, that is, how specific network structures yield specific systems properties. For this purpose, we have previously developed a reverse engineering procedure to identify network topologies with high likelihood in generating desired systems properties. Our method searches the continuous parameter space of an assembly of network topologies, without enumerating individual network topologies separately as traditionally done in other reverse engineering procedures. Here we tested this CPSS (continuous parameter space search) method on a previously studied problem: the resettable bistability of an Rb-E2F gene network in regulating the quiescence-to-proliferation transition of mammalian cells. From a simplified Rb-E2F gene network, we identified network topologies responsible for generating resettable bistability. The CPSS-identified topologies are consistent with those reported in the previous study based on individual topology search (ITS), demonstrating the effectiveness of the CPSS approach. Since the CPSS and ITS searches are based on different mathematical formulations and different algorithms, the consistency of the results also helps cross-validate both approaches. A unique advantage of the CPSS approach lies in its applicability to biological networks with large numbers of nodes. To aid the application of the CPSS approach to the study of other biological systems, we have developed a computer package that is available in Information S1.