Browsing by Author "Murch, Randall Steven"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Assessing the Role of Cyberbiosecurity in Agriculture: A Case StudyDrape, Tiffany A.; Magerkorth, Noah; Sen, Anuradha; Simpson, Joseph; Seibel, Megan M.; Murch, Randall Steven; Duncan, Susan E. (Frontiers, 2021-08-19)Agriculture has adopted the use of smart technology to help meet growing food demands. This increased automation and associated connectivity increases the risk of farms being targeted by cyber-attacks. Increasing frequency of cybersecurity breaches in many industries illustrates the need for securing our food supply chain. The uniqueness of biological data, the complexity of integration across the food and agricultural system, and the importance of this system to the U.S. bioeconomy and public welfare suggests an urgency as well as unique challenges that are not common across all industries. To identify and address the gaps in awareness and knowledge as well as encourage collaborations, Virginia Tech hosted a virtual workshop consisting of professionals from agriculture, cybersecurity, government, and academia. During the workshop, thought leaders and influencers discussed 1) common food and agricultural system challenges, scenarios, outcomes and risks to various sectors of the system; 2) cyberbiosecurity strategies for the system, gaps in workforce and training, and research and policy needs. The meeting sessions were transcribed and analyzed using qualitative methodology. The most common themes that emerged were challenges, solutions, viewpoints, common vocabulary. From the results of the analysis, it is evident that none of the participating groups had available cybersecurity training and resources. Participants were uncertain about future pathways for training, implementation, and outreach related to cyberbiosecurity. Recommendations include creating training and education, continued interdisciplinary collaboration, and recruiting government involvement to speed up better security practices related to cyberbiosecurity.
- Cyberbiosecurity: A Call for Cooperation in a New Threat LandscapeRichardson, Lauren C.; Connell, Nancy D.; Lewis, Stephen M.; Pauwels, Eleonore; Murch, Randall Steven (2019-06-06)The life sciences now interface broadly with information technology (IT) and cybersecurity. This convergence is a key driver in the explosion of biotechnology research and its industrial applications in health care, agriculture, manufacturing, automation, artificial intelligence, and synthetic biology. As the information and handling mechanisms for biological materials have become increasingly digitized, many market sectors are now vulnerable to threats at the digital interface. This growing landscape will be addressed by cyberbiosecurity, the emerging field at the convergence of both the life sciences and IT disciplines. This manuscript summarizes the current cyberbiosecurity landscape, identifies existing vulnerabilities, and calls for formalized collaboration across a swath of disciplines to develop frameworks for early response systems to anticipate, identify, and mitigate threats in this emerging domain.
- Cyberbiosecurity: A New Perspective on Protecting US Food and Agricultural SystemDuncan, Susan E.; Reinhard, Robert; Williams, Robert C.; Ramsey, A. Ford; Thomason, Wade E.; Lee, Kiho; Dudek, Nancy; Mostaghimi, Saied; Colbert, Edward; Murch, Randall Steven (Frontiers, 2019-03-29)Our national data and infrastructure security issues affecting the "bioeconomy" are evolving rapidly. Simultaneously, the conversation about cyber security of the U.S. food and agricultural system (cyber biosecurity) is incomplete and disjointed. The food and agricultural production sectors influence over 20% of the nation's economy ($ 6.7T) and 15% of U.S. employment (43.3M jobs). The food and agricultural sectors are immensely diverse and they require advanced technologies and efficiencies that rely on computer technologies, big data, cloud-based data storage, and internet accessibility. There is a critical need to safeguard the cyber biosecurity of our bio economy, but currently protections are minimal and do not broadly exist across the food and agricultural system. Using the food safetymanagement Hazard Analysis Critical Control Point systemconcept as an introductory point of reference, we identify important features in broad food and agricultural production and food systems: dairy, food animals, row crops, fruits and vegetables, and environmental resources (water). This analysis explores the relevant concepts of cyber biosecurity from food production to the end product user (such as the consumer) and considers the integration of diverse transportation, supplier, and retailer networks. We describe common challenges and unique barriers across these systems and recommend solutions to advance the role of cyber biosecurity in the food and agricultural sectors.
- Cyberbiosecurity: An Emerging New Discipline to Help Safeguard the BioeconomyMurch, Randall Steven; So, William K.; Buchholz, Wallace G.; Raman, Sanjay; Peccoud, Jean (2018-04-05)Cyberbiosecurity is being proposed as a formal new enterprise which encompasses cybersecurity, cyber-physical security and biosecurity as applied to biological and biomedical-based systems. In recent years, an array of important meetings and public discussions, commentaries and publications have occurred that highlight numerous vulnerabilities. While necessary first steps, they do not provide a systematized structure for effectively promoting communication, education and training, elucidation and prioritization for analysis, research, development, test and evaluation and implementation of scientific, technological, standards of practice, policy, or even regulatory or legal considerations for protecting the bioeconomy. Further, experts in biosecurity and cybersecurity are generally not aware of each other's domains, expertise, perspectives, priorities, or where mutually supported opportunities exist for which positive outcomes could result. Creating, promoting and advancing a new discipline can assist with formal, beneficial and continuing engagements. Recent key activities and publications that inform the creation of Cyberbiosecurity are briefly reviewed, as is the expansion of Cyberbiosecurity to include biomanufacturmg which is supported by a rigorous analysis of a biomanufacturmg facility. Recommendations are provided to initialize Cyberbiosecurity and place it on a trajectory to establish a structured and sustainable discipline, forum and enterprise.
- Validation of high throughput sequencing and microbial forensics applicationsBudowle, Bruce; Connell, Nancy D.; Bielecka-Oder, Anna; Colwell, Rita R.; Corbett, Cindi R.; Fletcher, Jacqueline; Forsman, Mats; Kadavy, Dana R.; Markotic, Alemka; Morse, Stephen A.; Murch, Randall Steven; Sajantila, Antti; Schmedes, Sarah E.; Ternus, Krista L.; Turner, Stephen D.; Minot, Samuel (2014-07-30)High throughput sequencing (HTS) generates large amounts of high quality sequence data for microbial genomics. The value of HTS for microbial forensics is the speed at which evidence can be collected and the power to characterize microbial-related evidence to solve biocrimes and bioterrorist events. As HTS technologies continue to improve, they provide increasingly powerful sets of tools to support the entire field of microbial forensics. Accurate, credible results allow analysis and interpretation, significantly influencing the course and/or focus of an investigation, and can impact the response of the government to an attack having individual, political, economic or military consequences. Interpretation of the results of microbial forensic analyses relies on understanding the performance and limitations of HTS methods, including analytical processes, assays and data interpretation. The utility of HTS must be defined carefully within established operating conditions and tolerances. Validation is essential in the development and implementation of microbial forensics methods used for formulating investigative leads attribution. HTS strategies vary, requiring guiding principles for HTS system validation. Three initial aspects of HTS, irrespective of chemistry, instrumentation or software are: 1) sample preparation, 2) sequencing, and 3) data analysis. Criteria that should be considered for HTS validation for microbial forensics are presented here. Validation should be defined in terms of specific application and the criteria described here comprise a foundation for investigators to establish, validate and implement HTS as a tool in microbial forensics, enhancing public safety and national security.