Browsing by Author "Murdock, Courtney C."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Age influences the thermal suitability of Plasmodium falciparum transmission in the Asian malaria vector Anopheles stephensiMiazgowicz, K. L.; Shocket, M. S.; Ryan, Sadie J.; Villena, O. C.; Hall, R. J.; Owen, J.; Adanlawo, T.; Balaji, K.; Johnson, Leah R.; Mordecai, Erin A.; Murdock, Courtney C. (2020-07-29)Models predicting disease transmission are vital tools for long-term planning of malaria reduction efforts, particularly for mitigating impacts of climate change. We compared temperature-dependent malaria transmission models when mosquito life-history traits were estimated from a truncated portion of the lifespan (a common practice) versus traits measured across the full lifespan. We conducted an experiment on adult femaleAnopheles stephensi, the Asian urban malaria mosquito, to generate daily per capita values for mortality, egg production and biting rate at six constant temperatures. Both temperature and age significantly affected trait values. Further, we found quantitative and qualitative differences between temperature-trait relationships estimated from truncated data versus observed lifetime values. Incorporating these temperature-trait relationships into an expression governing the thermal suitability of transmission, relativeR(0)(T), resulted in minor differences in the breadth of suitable temperatures forPlasmodium falciparumtransmission between the two models constructed from onlyAn. stephensitrait data. However, we found a substantial increase in thermal niche breadth compared with a previously published model consisting of trait data from multipleAnophelesmosquito species. Overall, this work highlights the importance of considering how mosquito trait values vary with mosquito age and mosquito species when generating temperature-based suitability predictions of transmission.
- Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic modelsMordecai, Erin A.; Cohen, Jeremy M.; Evans, Michelle V.; Gudapati, Prithvi; Johnson, Leah R.; Lippi, Catherine A.; Miazgowicz, Kerri; Murdock, Courtney C.; Rohr, Jason R.; Ryan, Sadie J.; Savage, Van; Shocket, Marta S.; Stewart-Ibarra, Anna M.; Thomas, Matthew B.; Weikel, Daniel P. (PLOS, 2017-04)Recent epidemics of Zika, dengue, and chikungunya have heightened the need to understand the seasonal and geographic range of transmission by Aedes aegypti and Ae. albopictus mosquitoes. We use mechanistic transmission models to derive predictions for how the probability and magnitude of transmission for Zika, chikungunya, and dengue change with mean temperature, and we show that these predictions are well matched by human case data. Across all three viruses, models and human case data both show that transmission occurs between 18-34 degrees C with maximal transmission occurring in a range from 26-29 degrees C. Controlling for population size and two socioeconomic factors, temperature-dependent transmission based on our mechanistic model is an important predictor of human transmission occurrence and incidence. Risk maps indicate that tropical and subtropical regions are suitable for extended seasonal or year-round transmission, but transmission in temperate areas is limited to at most three months per year even if vectors are present. Such brief transmission windows limit the likelihood of major epidemics following disease introduction in temperate zones.
- Mapping current and future thermal limits to suitability for malaria transmission by the invasive mosquito Anopheles stephensiRyan, Sadie J.; Lippi, Catherine A.; Villena, Oswaldo C.; Singh, Aspen; Murdock, Courtney C.; Johnson, Leah R. (2023-03-21)Background Anopheles stephensi is a malaria-transmitting mosquito that has recently expanded from its primary range in Asia and the Middle East, to locations in Africa. This species is a competent vector of both Plasmodium falciparum and Plasmodium vivax malaria. Perhaps most alarming, the characteristics of An. stephensi, such as container breeding and anthropophily, make it particularly adept at exploiting built environments in areas with no prior history of malaria risk. Methods In this paper, global maps of thermal transmission suitability and people at risk (PAR) for malaria transmission by An. stephensi were created, under current and future climate. Temperature-dependent transmission suitability thresholds derived from recently published species-specific thermal curves were used to threshold gridded, monthly mean temperatures under current and future climatic conditions. These temperature driven transmission models were coupled with gridded population data for 2020 and 2050, under climate-matched scenarios for future outcomes, to compare with baseline predictions for 2020 populations. Results Using the Global Burden of Disease regions approach revealed that heterogenous regional increases and decreases in risk did not mask the overall pattern of massive increases of PAR for malaria transmission suitability with An. stephensi presence. General patterns of poleward expansion for thermal suitability were seen for both P. falciparum and P. vivax transmission potential. Conclusions Understanding the potential suitability for An. stephensi transmission in a changing climate provides a key tool for planning, given an ongoing invasion and expansion of the vector. Anticipating the potential impact of onward expansion to transmission suitable areas, and the size of population at risk under future climate scenarios, and where they occur, can serve as a large-scale call for attention, planning, and monitoring.
- An open challenge to advance probabilistic forecasting for dengue epidemicsJohansson, Michael A.; Apfeldorf, Karyn M.; Dobson, Scott; Devita, Jason; Buczak, Anna L.; Baugher, Benjamin; Moniz, Linda J.; Bagley, Thomas; Babin, Steven M.; Guven, Erhan; Yamana, Teresa K.; Shaman, Jeffrey; Moschou, Terry; Lothian, Nick; Lane, Aaron; Osborne, Grant; Jiang, Gao; Brooks, Logan C.; Farrow, David C.; Hyun, Sangwon; Tibshirani, Ryan J.; Rosenfeld, Roni; Lessler, Justin; Reich, Nicholas G.; Cummings, Derek AT T.; Lauer, Stephen A.; Moore, Sean M.; Clapham, Hannah E.; Lowe, Rachel; Bailey, Trevor C.; Garcia-Diez, Markel; Carvalho, Marilia Sa; Rodo, Xavier; Sardar, Tridip; Paul, Richard; Ray, Evan L.; Sakrejda, Krzysztof; Brown, Alexandria C.; Meng, Xi; Osoba, Osonde; Vardavas, Raffaele; Manheim, David; Moore, Melinda; Rao, Dhananjai M.; Porco, Travis C.; Ackley, Sarah; Liu, Fengchen; Worden, Lee; Convertino, Matteo; Liu, Yang; Reddy, Abraham; Ortiz, Eloy; Rivero, Jorge; Brito, Humberto; Juarrero, Alicia; Johnson, Leah R.; Gramacy, Robert B.; Cohen, Jeremy M.; Mordecai, Erin A.; Murdock, Courtney C.; Rohr, Jason R.; Ryan, Sadie J.; Stewart-Ibarra, Anna M.; Weikel, Daniel P.; Jutla, Antarpreet; Khan, Rakibul; Poultney, Marissa; Colwell, Rita R.; Rivera-Garcia, Brenda; Barker, Christopher M.; Bell, Jesse E.; Biggerstaff, Matthew; Swerdlow, David; Mier-y-Teran-Romero, Luis; Forshey, Brett M.; Trtanj, Juli; Asher, Jason; Clay, Matt; Margolis, Harold S.; Hebbeler, Andrew M.; George, Dylan; Chretien, Jean-Paul (National Academy of Sciences, 2019-11-26)A wide range of research has promised new tools for forecasting infectious disease dynamics, but little of that research is currently being applied in practice, because tools do not address key public health needs, do not produce probabilistic forecasts, have not been evaluated on external data, or do not provide sufficient forecast skill to be useful. We developed an open collaborative forecasting challenge to assess probabilistic forecasts for seasonal epidemics of dengue, a major global public health problem. Sixteen teams used a variety of methods and data to generate forecasts for 3 epidemiological targets (peak incidence, the week of the peak, and total incidence) over 8 dengue seasons in Iquitos, Peru and San Juan, Puerto Rico. Forecast skill was highly variable across teams and targets. While numerous forecasts showed high skill for midseason situational awareness, early season skill was low, and skill was generally lowest for high incidence seasons, those for which forecasts would be most valuable. A comparison of modeling approaches revealed that average forecast skill was lower for models including biologically meaningful data and mechanisms and that both multimodel and multiteam ensemble forecasts consistently outperformed individual model forecasts. Leveraging these insights, data, and the forecasting framework will be critical to improve forecast skill and the application of forecasts in real time for epidemic preparedness and response. Moreover, key components of this project-integration with public health needs, a common forecasting framework, shared and standardized data, and open participation-can help advance infectious disease forecasting beyond dengue.
- Warming temperatures could expose more than 1.3 billion new people to Zika virus risk by 2050Ryan, Sadie J.; Carlson, Colin J.; Tesla, Blanka; Bonds, Matthew H.; Ngonghala, Calistus N.; Mordecai, Erin A.; Johnson, Leah R.; Murdock, Courtney C. (2020-10-09)In the aftermath of the 2015 pandemic of Zika virus (ZIKV), concerns over links between climate change and emerging arboviruses have become more pressing. Given the potential that much of the world might remain at risk from the virus, we used a previously established temperature-dependent transmission model for ZIKV to project climate change impacts on transmission suitability risk by mid-century (a generation into the future). Based on these model predictions, in the worst-case scenario, over 1.3 billion new people could face suitable transmission temperatures for ZIKV by 2050. The next generation will face substantially increased ZIKV transmission temperature suitability in North America and Europe, where naive populations might be particularly vulnerable. Mitigating climate change even to moderate emissions scenarios could significantly reduce global expansion of climates suitable for ZIKV transmission, potentially protecting around 200 million people. Given these suitability risk projections, we suggest an increased priority on research establishing the immune history of vulnerable populations, modeling when and where the next ZIKV outbreak might occur, evaluating the efficacy of conventional and novel intervention measures, and increasing surveillance efforts to prevent further expansion of ZIKV.