Browsing by Author "Muthiah, Krishnaveni"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Heavy Rainfall Impact on Agriculture: Crop Risk Assessment with Farmer Participation in the Paravanar Coastal River BasinMuthiah, Krishnaveni; Arunya, K. G.; Sridhar, Venkataramana; Patakamuri, Sandeep Kumar (MDPI, 2025-02-24)Heavy rainfall significantly impacts agriculture by damaging crops and causing substantial economic losses. The Paravanar River Basin, a coastal river basin in India, experiences heavy rainfall during the monsoon season. This study analyzed both ground-level rainfall measurements and farmers’ experiences to understand the effects of heavy rainfall on agriculture. Rainfall data from nine rain gauge locations were analyzed across three cropping seasons: Kharif 1 (June to August), Kharif 2 (September to November), and Rabi (December to May). To determine the frequency of heavy rainfall events, a detailed analysis was conducted based on the standards set by the India Meteorological Department (IMD). Villages near stations showing increasing rainfall trends and a higher frequency of heavy rainfall events were classified as vulnerable. The primary crops cultivated in these vulnerable areas were identified through a questionnaire survey with local farmers. A detailed analysis of these crops was conducted to determine the cropping season most affected by heavy rainfall events. The impacts of heavy rainfall on the primary crops were assessed using the Delphi technique, a score-based crop risk assessment method. These impacts were categorized into eight distinct types. Among them, yield reduction, waterlogging, crop damage, soil erosion, and crop failure emerged as the most significant challenges in the study area. Additional impacts included nutrient loss, disrupted microbial activity, and disease outbreaks. Based on this evaluation, risks were classified into five categories: low risk, moderate risk, high risk, very high risk, and extreme risk. This categorization offers a framework for understanding potential consequences and making informed decisions. To address these challenges, the study recommended mitigation measures such as crop management, soil management, and drainage management. Farmers were also encouraged to conduct a cause-and-effect analysis. This bottom-up approach raised awareness among farmers and provided practical solutions to reduce crop losses and mitigate the effects of heavy rainfall.
- Long-Term Homogeneity, Trend, and Change-Point Analysis of Rainfall in the Arid District of Ananthapuramu, Andhra Pradesh State, IndiaPatakamuri, Sandeep Kumar; Muthiah, Krishnaveni; Sridhar, Venkataramana (MDPI, 2020-01-11)The objective of this study is to evaluate the homogeneity, trend, and trend change points in the rainfall data. Daily rainfall data was collected for the arid district of Ananthapuramu, Andhra Pradesh state, India from 1981 to 2016 at the subdistrict level and aggregated to monthly, annual, seasonal rainfall totals, and the number of rainy days. After quality checks and homogeneity analysis, a total of 27 rain gauge locations were considered for trend analysis. A serial correlation test was applied to all the time series to identify serially independent series. NonParametric Mann–Kendall test and Spearman’s rank correlation tests were applied to serially independent series. The magnitude of the trend was calculated using Sen’s slope method. For the data influenced by serial correlation, various modified versions of Mann–Kendall tests (pre-whitening, trend-free pre-whitening, bias-corrected pre-whitening, and two variants of variance correction approaches) were applied. A significant increasing summer rainfall trend is observed in six out of 27 stations. Significant decreasing trends are observed at two stations during the southwest monsoon season and at two stations during the northeast monsoon season. To identify the trend change points in the time series, distribution−free cumulative sum test, and sequential Mann–Kendall tests were applied. Two open−source library packages were developed in R language namely, ”modifiedmk” and ”trendchange” to implement the statistical tests mentioned in this paper. The study results benefit water resource management, drought mitigation, socio−economic development, and sustainable agricultural planning in the region.