Browsing by Author "Neel, James O'Daniell"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Analysis and Design of Cognitive Radio Networks and Distributed Radio Resource Management AlgorithmsNeel, James O'Daniell (Virginia Tech, 2006-09-06)Cognitive radio is frequently touted as a platform for implementing dynamic distributed radio resource management algorithms. In the envisioned scenarios, radios react to measurements of the network state and change their operation according to some goal driven algorithm. Ideally this flexibility and reactivity yields tremendous gains in performance. However, when the adaptations of the radios also change the network state, an interactive decision process is spawned and once desirable algorithms can lead to catastrophic failures when deployed in a network. This document presents techniques for modeling and analyzing the interactions of cognitive radio for the purpose of improving the design of cognitive radio and distributed radio resource management algorithms with particular interest towards characterizing the algorithms' steady-state, convergence, and stability properties. This is accomplished by combining traditional engineering and nonlinear programming analysis techniques with techniques from game to create a powerful model based approach that permits rapid characterization of a cognitive radio algorithm's properties. Insights gleaned from these models are used to establish novel design guidelines for cognitive radio design and powerful low-complexity cognitive radio algorithms. This research led to the creation of a new model of cognitive radio network behavior, an extensive number of new results related to the convergence, stability, and identification of potential and supermodular games, numerous design guidelines, and several novel algorithms related to power control, dynamic frequency selection, interference avoidance, and network formation. It is believed that by applying the analysis techniques and the design guidelines presented in this document, any wireless engineer will be able to quickly develop cognitive radio and distributed radio resource management algorithms that will significantly improve spectral efficiency and network and device performance while removing the need for significant post-deployment site management.
- Simulation of an Implementation and Evaluation of the Layered Radio ArchitectureNeel, James O'Daniell (Virginia Tech, 2002-12-17)Software radio is a radio that is substantially defined in software and whose physical layer behavior can be significantly altered through changes to its software. As a primary goal of software radio is the ability to support existing and future wireless protocols, software radio necessitates the use of a rapidly reprogrammable baseband processing solution. However third generation wireless protocols represent a significant increase in complexity over second generation protocols. Due to the natural performance sacrifices that must be made when moving an application from an Application Specific Integrated Circuit (ASIC) to a general purpose processor or a digital signal processor, it is feared that reprogrammable processing solutions may not suffice for the emerging wireless protocols, which would significantly hinder the realization of software radio, particularly in the handheld domain where power consumption and chip area are critical. Recently, the Configurable Computing Lab at Virginia Tech developed a new breed of reprogrammable processor which they called "custom computing machine" (CCM). Representing a dramatic departure from traditional architectures used for baseband processing solutions, CCMs utilize a large number of optimized and programmable processing cores connected through a programmable mesh. Due to this architectural approach, CCMs have been promoted as supplying a level of processing power and power efficiency similar to ASICs while providing a level of reconfigurability similar to that of a DSP. Subsequently, Dr. Srikathyayani Srikanteswara proposed a new software radio architecture, known as the Layered Radio Architecture, which is intended to facilitate the inclusion of CCMs into a software radio. The primary goal of the research presented in this thesis is to demonstrate how a particular CCM, Stallion, can be used within the Layered Radio Architecture to provide sufficient processing performance, power efficiency, and reconfigurability to meet the constraints of the handheld domain through implementations of a single user adaptive receiver with adaptive complex filtering and a W-CDMA downlink rake receiver. These metrics are measured from a detailed simulation of Stallion and the Configuration Layer of the Layered Radio Architecture using advanced object oriented programming techniques that facilitate the inclusion of statistics gathering routines into normal operation. To provide perspective, these statistics are compared to the performance that could be expected from an implementation on a top-of-the-line DSP.