Browsing by Author "Nevo, Eviatar"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Genomic divergence and adaptive convergence in Drosophila simulans from Evolution Canyon, IsraelKang, Lin; Rashkovetsky, Eugenia; Michalak, Katarzyna; Garner, Harold R.; Mahaney, James E.; Rzigalinski, Beverly A.; Korol, Abraham B.; Nevo, Eviatar; Michalak, Pawel (2019-06-11)Biodiversity refugia formed by unique features of the Mediterranean arid landscape, such as the dramatic ecological contrast of "Evolution Canyon," provide a natural laboratory in which local adaptations to divergent microclimate conditions can be investigated. Significant insights have been provided by studies of Drosophila melanogaster diversifying along the thermal gradient in Evolution Canyon, but a comparative framework to survey adaptive convergence across sister species at the site has been lacking. To fill this void, we present an analysis of genomic polymorphism and evolutionary divergence of Drosophila simulans, a close relative of Drosophila melanogaster with which it co-occurs on both slopes of the canyon. Our results show even deeper interslope divergence in D. simulans than in D. melanogaster, with extensive signatures of selective sweeps present in flies from both slopes but enhanced in the population from the hotter and drier south-facing slope. Interslope divergence was enriched for genes related to electrochemical balance and transmembrane transport, likely in response to increased selection for dehydration resistance on the hotter slope. Both species shared genomic regions that underwent major selective sweeps, but the overall level of adaptive convergence was low, demonstrating no shortage of alternative genomic solutions to cope with the challenges of the microclimate contrast. Mobile elements were a major source of genetic polymorphism and divergence, affecting all parts of the genome, including coding sequences of mating behavior-related genes.
- Regulation of gene expression and RNA editing in Drosophila adapting to divergent microclimatesYablonovitch, Arielle L.; Fu, Jeremy; Li, Kexin; Mahato, Simpla; Kang, Lin; Rashkovetsky, Eugenia; Korol, Abraham B.; Tang, Hua; Michalak, Pawel; Zelhof, Andrew C.; Nevo, Eviatar; Li, Jin Billy (Springer Nature, 2017-11-17)Determining the mechanisms by which a species adapts to its environment is a key endeavor in the study of evolution. In particular, relatively little is known about how transcriptional processes are fine-tuned to adjust to different environmental conditions. Here we study Drosophila melanogaster from 'Evolution Canyon' in Israel, which consists of two opposing slopes with divergent microclimates. We identify several hundred differentially expressed genes and dozens of differentially edited sites between flies from each slope, correlate these changes with genetic differences, and use CRISPR mutagenesis to validate that an intronic SNP in prominin regulates its editing levels. We also demonstrate that while temperature affects editing levels at more sites than genetic differences, genetically regulated sites tend to be less affected by temperature. This work shows the extent to which gene expression and RNA editing differ between flies from different microclimates, and provides insights into the regulation responsible for these differences.
- An RNA sequencing transcriptome analysis of the high-temperature stressed tall fescue reveals novel insights into plant thermotoleranceHu, Tao; Sun, Xiaoyan; Zhang, Xunzhong; Nevo, Eviatar; Fu, Jinmin (2014-12-19)Background Tall fescue (Festuca arundinacea Schreb.) is major cool-season forage and turf grass species worldwide, but high-temperature is a major environmental stress that dramatically threaten forage production and turf management of tall fescue. However, very little is known about the whole-genome molecular mechanisms contributing to thermotolerance. The objectives of this study were to analyzed genome-wide gene expression profiles in the leaves of two tall fescue genotypes, heat tolerant ‘PI578718’ and heat sensitive ‘PI234881’ using high-throughput RNA sequencing. Results A total of 262 million high-quality paired-end reads were generated and assembled into 31,803 unigenes with an average length of 1,840 bp. Of these, 12,974 unigenes showed different expression patterns in response to heat stress and were categorized into 49 Gene Ontology functional subcategories. In addition, the variance of enrichment degree in each functional subcategory between PI578718 and PI234881 increased with increasing treatment time. Cell division and cell cycle genes showed a massive increase in transcript abundance in heat-stressed plants and more activated genes were detected in PI 578718 by Kyoto Encyclopedia of Genes and Genomes pathways analysis. Low molecular weight heat shock protein (LMW-HSP, HSP20) showed activated in two stressed genotypes and high molecular weight HSP (HMW-HSP, HSP90) just in PI578718. Assimilation such as photosynthesis, carbon fixation, CH4, N, S metabolism decreased along with increased dissimilation such as oxidative phosphorylation. Conclusions The assembled transcriptome of tall fescue could serve as a global description of expressed genes and provide more molecular resources for future functional characterization analysis of genomics in cool-season turfgrass in response to high-temperature. Increased cell division, LMW/HMW-HSP, dissimilation and antioxidant transcript amounts in tall fescue were correlated with successful resistance to high temperature stress.