Browsing by Author "Ni, Yong"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Giant magnetoelectric effect in sintered multilayered composite structuresIslam, Rashed Adnan; Ni, Yong; Khachaturyan, Armen G.; Priya, Shashank (American Institute of Physics, 2008-08-15)Trilayer composites consisting of 0.9Pb(Zr(0.52)Ti(0.48))O(3)-0-1Pb(Zn(1/3)Nb(2/3))O(3) (0.9 PZT-0.1 PZN) and Ni(0.6)Cu(0.2)Zn(0.2)Fe(2)O(4) (NCZF) in the configuration NCZF-(0.9 PZT-0.1 PZN)-NCZF were synthesized using pressure assisted sintering. Composites with optimized magnetostrictive to piezoelectric thickness ratio showed a high magnetoelectric (ME) coefficient of 525 mV/cm Oe. Further enhancement in the magnitude of ME coefficient was obtained (595 mV/cm Oe) when the angle of applied dc magnetic field was changed to 45 degrees. Changing the intermediate piezoelectric layer from single to trilayer stack geometry configuration leads to the realization of giant ME response of 782 mV/cm Oe in sintered composites. (C) 2008 American Institute of Physics.
- Modeling of magnetoelectric effect in polycrystalline multiferroic laminates influenced by the orientations of applied electric/magnetic fieldsNi, Yong; Priya, Shashank; Khachaturyan, Armen G. (American Institute of Physics, 2009-04-15)By using coarse graining model, the dependence of magnetoelectric (ME) coupling on the mutual orientations of magnetic and electric fields with respect to the orientation of layers in polycrystalline multiferroic laminates is investigated. It is shown that the ME coefficient, described by polarization change in response to the applied magnetic field, is proportional to the trace of effective piezomagnetic strain tensor projected onto laminate interfaces. The piezomagnetic strain significantly depends on the orientation of applied magnetic fields. The results obtained here demonstrate that the magnetoelectric effect in layered composites can be significantly improved by optimizing the configuration of applied electric/magnetic fields.