Browsing by Author "Obst, Andreas W."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Nonlinear static and transient analysis of generally laminated beamsObst, Andreas W. (Virginia Tech, 1991)In this study two one-dimensional finite element formulations based on higher-order displacement models have been developed. Both theories account for geometric nonlinearities, a parabolic shear strain distribution through the thickness, and satisfy the shear stress free boundary conditions at the upper and lower surfaces of the beam. The theories also account for the bend-stretch, shear-stretch, and bend-twist couplings inherent to generally laminated composite beams. Further, a coupling between the shear deformation and the twisting is introduced. The lateral strains are assumed nonzero and retained in the formulation. The first model termed SVHSDT also accounts for the continuity of the interlaminar shear stresses at the layer interfaces, while keeping the number of degrees of freedom independent of the number of layers. This theory though is restricted to the analysis of symmetrically laminated cross-ply beams. The formulation has been applied to the linear static and free vibration analysis. The second model termed RHSDT is valid for generally laminated beams. This model has been applied to the nonlinear static and transient analysis of generally laminated beams, free vibration analysis, and impact analysis. The effect of axial stresses on the nonlinear transient response has also been investigated using this theory. For generally laminated beams the lateral strains and the shear-twist coupling were found to have a significant effect on the vibrations frequencies. Also, as expected, initial stresses, boundary conditions and the lamination scheme were found to have a significant effect on the nonlinear responses.
- Thermal stresses in coatings on carbon-carbon compositesObst, Andreas W. (Virginia Tech, 1995)The objective of this study was to investigate thermal stresses in oxidation protection coatings on carbon-carbon composites. Multilayer coatings with each layer of coating applied at a different temperature, and gradient coatings with continuously varying properties through the thickness of the coating were considered. Particular emphasis was on the prediction of the thermal stresses in the vicinity of geometric discontinuities. For the analysis an incremental generalized plane-strain finite element model that accounts for temperature-dependent material properties and continuously varying properties in the gradient coatings was developed. The model is based on an incremental constitutive equation for linear thermoelastic materials that accounts for the coupling between stresses and the temperature-dependence of the material properties. In addition to the finite element model, an incremental simplified plane stress analysis for the prediction of stresses away from geometric discontinuities was developed. Analyses of carbon-carbon substrates with coatings showed that large stress concentrations in the coatings may be present near the geometric discontinuities. It was found that inserting a compliant layer between the carbon-carbon substrate and the oxidation protection coatings, or inserting a gradient coating with properties varying from those of a compliant material near the carbon-carbon substrate to those of the oxidation protection coating near the oxidation protection coating, could be used to significantly reduce the magnitudes of the stresses in the stress concentrations. The influence of geometric and material parameters on the stresses was studied and for some combinations of parameters stresses near the geometric discontinuities could be reduced to magnitudes that were smaller than the magnitudes of the stresses away from the discontinuities. For coatings applied at different temperatures, the application temperature of the coatings significantly influenced the magnitude of the stresses. The lowest stresses were obtained for gradient coatings for which the application temperature of the gradient coating varied continuously, proportional to the material composition in the gradient coating.