Browsing by Author "Padhi, Abinash"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Aligned fibers direct collective cell migration to engineer closing and nonclosing wound gapsSharma, Puja; Ng, Colin; Jana, Aniket; Padhi, Abinash; Szymanski, Paige; Lee, Jerry S. H.; Behkam, Bahareh; Nain, Amrinder S. (2017-09-15)Cell emergence onto damaged or organized fibrous extracellular matrix (ECM) is a crucial precursor to collective cell migration in wound closure and cancer metastasis, respectively. However, there is a fundamental gap in our quantitative understanding of the role of local ECM size and arrangement in cell emergence-based migration and local gap closure. Here, using ECM-mimicking nanofibers bridging cell monolayers, we describe a method to recapitulate and quantitatively describe these in vivo behaviors over multispatial (single cell to cell sheets) and temporal (minutes to weeks) scales. On fiber arrays with large interfiber spacing, cells emerge (invade) either singularly by breaking cell-cell junctions analogous to release of a stretched rubber band (recoil), or in groups of few cells (chains), whereas on closely spaced fibers, multiple chains emerge collectively. Advancing cells on fibers form cell streams, which support suspended cell sheets (SCS) of various sizes and curvatures. SCS converge to form local gaps that close based on both the gap size and shape. We document that cell stream spacing of 375 mu m and larger hinders SCS advancement, thus providing abilities to engineer closing and nonclosing gaps. Altogether we highlight the importance of studying cell-fiber interactions and matrix structural remodeling in fundamental and translational cell biology.
- Force-exerting perpendicular lateral protrusions in fibroblastic cell contractionPadhi, Abinash; Singh, Karanpreet; Franco-Barraza, Janusz; Marston, Daniel J.; Cukierman, Edna; Hahn, Klaus M.; Kapania, Rakesh K.; Nain, Amrinder S. (2020-07-21)Aligned extracellular matrix fibers enable fibroblasts to undergo myofibroblastic activation and achieve elongated shapes. Activated fibroblasts are able to contract, perpetuating the alignment of these fibers. This poorly understood feedback process is critical in chronic fibrosis conditions, including cancer. Here, using fiber networks that serve as force sensors, we identify "3D perpendicular lateral protrusions" (3D-PLPs) that evolve from lateral cell extensions named twines. Twines originate from stratification of cyclic-actin waves traversing the cell and swing freely in 3D to engage neighboring fibers. Once engaged, a lamellum forms and extends multiple secondary twines, which fill in to form a sheet-like PLP, in a force-entailing process that transitions focal adhesions to activated (i.e., pathological) 3D-adhesions. The specific morphology of PLPs enables cells to increase contractility and force on parallel fibers. Controlling geometry of extracellular networks confirms that anisotropic fibrous environments support 3D-PLP formation and function, suggesting an explanation for cancer-associated desmoplastic expansion. Padhi et al. employ nanofibers with controlled structure and alignment as an extra-cellular matrix model, on which they study the exertion of forces from adherent fibroblasts. Identifying force exerting 3D perpendicular lateral protrusions, authors describe a mechanism which leads to the contraction of parallel, neighbouring fibers, and the forces needed to move and align the neighbouring fibers. These findings have relevance in understanding cancer-associated desmoplastic expansion.
- Single Cell Force Platforms to Link Force-ECM Coupling in PathophysiologyPadhi, Abinash (Virginia Tech, 2021-10-04)Migratory cells in vivo move within a predominantly fibrous microenvironment through the action of forces. These dynamic interactions facilitate mechanosensing, critical to fundamental biological processes in pathophysiology. Naturally, the field of mechanobiology has evolved over the past several decades to decipher the role of forces in mechanotransduction using a variety of force-measurement platforms. A central challenge that has yet to be overcome in the field is connecting forces with the interplay between cell shape and ever-changing environment. Here, through design of specific fibrous architectures, a mechanobiological understanding of force feed-forward loop accounting for shape shifting of the environment and cells is developed. Using the non-electrospinning Spinneret Tunable Engineered Parameters (STEP) technique, two complementary force measurement platforms of varying physical attributes are developed to investigate how the force feed-forward loop impacts cell fate. Nanonet Force Microscopy (NFM) comprised of aligned nanonets is designed to study anisotropic cell shapes, while Crosshatch Force Microscopy (CM) comprised of orthogonal arrangement of fibers is designed to study cell bodies of broad shapes. The combination of shapes achieved on these networks recapitulate mesenchymal shapes observed in vivo, which are used to describe cell behaviors not reported before. The new findings include (i) discovery of a new biological structure, termed 3D-perpendicular lateral protrusions (3D-PLPs) which is proposed to be the missing biophysical link in the remodeling of the ECM and perpetuation of desmoplasia. Using NFM, seven discreet steps in formation of force-exerting PLPs anywhere along the cell body is documented, which allow cells to spread laterally and increase in contractility. Using a variety of fiber networks, it is shown that aligned fibers are necessary for PLP formation and suitable environments for myofibroblast activation, and (ii) a force dipole that links matrix deformability with cell contractility. Aided by machine learning, CFM automates the process of fiber feature recognition to measure forces as cells change shapes during migration and differentiate to osteogenic and adipogenic lineages. The force platforms are applied to investigate (i) the bioenergetic contributors fueling cellular migration and a surprisingly overwhelming impact of glycolytic energetic pathway over the traditionally thought mitochondrial energy production is found. However, neither pathway has substantial impact over the cellular force production, and (ii) quantitate the migratory and contractile response of enucleated cytoplasmic fragments naturally shed by cells. A peculiar contractility driven oscillatory migratory phenotype is found, capable of lasting over tens of hours, and absent in intact cells. Overall, new high spatiotemporal capabilities are developed in mechanobiology to quantitate the force-feed forward loops between cell shape and ECM in pathophysiology.