Browsing by Author "Pan, Lei"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Genome sequences of wild and domestic bactrian camelsJirimutu; Wang, Zhen; Ding, Guohui; Chen, Gangliang; Sun, Yamin; Sun, Zhihong; Zhang, Heping; Wang, Lei; Hasi, Surong; Zhang, Yan; Li, Jianmei; Shi, Yixiang; Xu, Ze; He, Chuan; Yu, Siriguleng; Li, Shengdi; Zhang, Wenbin; Batmunkh, Mijiddorj; Ts, Batsukh; Narenbatu; Unierhu; Bat-Ireedui, Shirzana; Gao, Hongwei; Baysgalan, Banzragch; Li, Qing; Jia, Zhiling; Turigenbayila; Subudenggerile; Narenmanduhu; Wang, Zhaoxia; Wang, Juan; Pan, Lei; Chen, Yongcan; Ganerdene, Yaichil; Dabxilt; Erdemt; Altansha; Altansukh; Liu, Tuya; Cao, Minhui; Aruuntsever; Bayart; Hosblig; He, Fei; Zha-ti, A.; Zheng, Guangyong; Qiu, Feng; Sun, Zikui; Zhao, Lele; Zhao, Wenjing; Liu, Baohong; Li, Chao; Chen, Yunqin; Tang, Xiaoyan; Guo, Chunyan; Liu, Wei; Ming, Liang; Temuulen; Cui, Aiying; Li, Yi; Gao, Junhui; Li, Jing; Wurentaodi; Niu, Shen; Sun, Tao; Zhai, Zhengxiao; Zhang, Min; Chen, Chen; Baldan, Tunteg; Bayaer, Tuman; Li, Yixue; Meng, He (Springer Nature, 2012-11)Bactrian camels serve as an important means of transportation in the cold desert regions of China and Mongolia. Here we present a 2.01 Gb draft genome sequence from both a wild and a domestic bactrian camel. We estimate the camel genome to be 2.38 Gb, containing 20,821 protein-coding genes. Our phylogenomics analysis reveals that camels shared common ancestors with other even-toed ungulates about 55-60 million years ago. Rapidly evolving genes in the camel lineage are significantly enriched in metabolic pathways, and these changes may underlie the insulin resistance typically observed in these animals. We estimate the genome-wide heterozygosity rates in both wild and domestic camels to be 1.0 x 10(-3). However, genomic regions with significantly lower heterozygosity are found in the domestic camel, and olfactory receptors are enriched in these regions. Our comparative genomics analyses may also shed light on the genetic basis of the camel's remarkable salt tolerance and unusual immune system.
- Hydrophobic Forces in Wetting FilmsPan, Lei (Virginia Tech, 2009-12-07)Flotation is an important separation process used in the mining industry. The process is based on hydrophobizing a selected mineral using an appropriate surfactant, so that an air bubble can spontaneously adhere on the mineral surface. The bubble-particle adhesion is possible only when the thin film of water between the bubble and particle ruptures, just like when two colloidal particles or air bubbles adhere with each other. Under most flotation conditions, however, both the double-layer and dispersion forces are repulsive, which makes it difficult to model the rupture of the wetting films using the DLVO theory. In the present work, we have measured the kinetics of film thinning between air bubble and flat surfaces of gold and silica. The former was hydrophobized by ex-site potassium amyl xanthate, while the latter by in-site Octadecyltrimetylammonium chlroride. The kinetics curves obtained with and without theses hydrophobizing agents were fitted to the Reynolds lubrication theory by assuming that the driving force for film thinning was the sum of capillary pressure and the disjoining pressure in a thin film. It was found that the kinetics curves obtained with hydrophilic surfaces can be fitted to the theory with the disjoining pressure calculated from the DLVO theory. With hydrophobized surfaces, however, the kinetics curves can be fitted only by assuming the presence of a non-DLVO attractive force (or hydrophobic force) in the wetting films. The results obtained in the present work shows that long-range hydrophobic forces is responsible for the faster drainage of wetting film. It is shown that the changes in hydrophobic forces upon the thin water film between air bubble and hydrophobic surface is dependent on hydrophobizing agent concentration, immersion time and the electrolyte concentration in solution. The obtained hydrophobic forces constant in wetting film K132 is compared with the hydrophobic forces constant between two solid surfaces K131 to verify the combining rule for flotation.
- Risk Assessment in Chinese Hospitalized Patients Comparing the Padua and Caprini Scoring AlgorithmsChen, Xiaolan; Pan, Lei; Deng, Hui; Zhang, Jingyuan; Tong, Xinjie; Huang, He; Zhang, Min; He, Jianlin; Caprini, Joseph A.; Wang, Yong (2018-12)The current venous thromboembolism (VTE) guidelines recommend all patients to be assessed for the risk of VTE using risk assessment models (RAMs). The study was to evaluate the performance of the Caprini and Padua RAMs among Chinese hospitalized patients. We reviewed data from 189 patients with deep venous thrombosis (DVT) and 201 non-DVT patients. Deep venous thrombosis risk factors were obtained from all patients. The sensitivity and specificity of the Caprini and Padua scores for all patients were calculated. The receiver operating curve (ROC) and the area under the ROC curve (AUC) were used to evaluate the performance of each score. We documented that age, acute infection, prothrombin time (PT), D-dimer, erythrocyte sedimentation rate, blood platelets, and anticoagulation were significantly associated with the occurrence of DVT (P < .05). These results were true for all medical and surgical patients group (G1), as well as the analysis of medical versus surgical patients (G2). Finally, analysis of the scores in patients with and without cancer was also done (G3). The Caprini has a higher sensitivity but a lower specificity than the Padua (P < .05). Caprini has a better predictive ability for the first 2 groups (P < .05). We found Caprini and Padua scores have a similar predictive value for patients with cancer (P > .05), while Caprini has a higher predictive ability for no cancer patients in G3 than Padua (P < .05). For Chinese hospitalized patients, Caprini has a higher sensitivity but a lower specificity than Padua. Overall, Caprini RAM has a better predictive ability than Padua RAM.
- Surface and Hydrodynamic Forces in Wetting FilmsPan, Lei (Virginia Tech, 2013-08-27)The process of froth flotation relies on using air bubbles to collect desired mineral particles dispersed in aqueous media on the surface, while leaving undesirous mineral particles behind. For a particle to be collected on the surface of a bubble, the thin liquid films (or wetting films) of water formed in between must rupture. According to the Frumkin-Derjaguin isotherm, it is necessary that wetting films can rupture when the disjoining pressures are negative. However, the negative disjoining pressures are difficult to measure due to the instability and short lifetimes of the films. In the present work, two new methods of determining negative disjoining pressures have been developed. One is to use the modified thin film pressure balance (TFPB) technique, and the other is to directly determine the interaction forces using the force apparatus for deformable surfaces (FADS) developed in the present work. The former is designed to obtain spatiotemporal profiles of unstable wetting films by recording the optical interference patterns. The kinetic information derived from the spatiotemporal profiles were then used to determine the disjoining pressures using an analytical expression derived in the present work on the basis of the Reynolds lubrication theory. The technique has been used to study the effects of surface hydrophobicity, electrolyte (Al3+ ions) concentration, and bubble size on the stability of wetting films. Further, the geometric mean combining rule has been tested to see if the disjoining pressures of the wetting films can be predicted from the disjoining pressures of the colloid films formed between two hydrophobic surfaces and the disjoining pressures of the foam films formed between two air bubbles. The FADS is capable of directly measuring the interaction forces between air bubble and solid surface, and simultaneously monitoring the bubble deformation. The results were analyzed using the Reynolds lubrication theory and the extended DLVO theory to determine both the hydrodynamic and disjoining pressures. The FADS was used to study the effects of surface hydrophobicity and approach speeds. The results show that hydrophobic force is the major driving force for the bubble-particle interactions occurring in flotation.