Browsing by Author "Park, Su-il"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Synthesis and Characterization of Poly(Butylene Sebacate-Co-Terephthalate) Copolyesters with Pentaerythritol as Branching AgentJang, Hyunho; Kwon, Sangwoo; Kim, Sun Jong; Kim, Young-Teck; Park, Su-il (MDPI, 2023-12-19)Poly(butylene sebacate-co-terephthalate) (PBSeT) copolyesters are prepared by melt polymerization via two-step transesterification and polycondensation using pentaerythritol (PE) as a branching agent. The effects of the incorporated PE on its chemical, thermal, mechanical, and degradation properties, along with the rheological properties of its melt, are investigated. The highest molecular weight and intrinsic viscosity along with the lowest melt flow index were achieved at a PE content of 0.2 mol%, with minimal reduction in the tensile strength and the highest tear strength. The addition of PE did not significantly influence the thermal behavior and stability of the PBSeT copolyesters; however, the elongation at break decreased with increasing PE content. The sample with 0.2 mol% PE exhibited a higher storage modulus and loss modulus as well as a lower loss angle tangent than the other samples, indicating improved melt elasticity. The incorporation of more than 0.2 mol% PE enhanced the enzymatic degradation of copolyesters. In summary, including within 0.2 mol%, PE effectively improved both the processability-related characteristics and degradation properties of PBSeT copolyesters, suggesting their potential suitability for use in agricultural and packaging materials.
- TEMPO-Oxidized Cellulose Nanofibril Films Incorporating Graphene Oxide NanofillersKim, Yoojin; Kim, Young-Teck; Wang, Xiyu; Min, Byungjin; Park, Su-il (MDPI, 2023-06-11)To design a new system of novel TEMPO-oxidized cellulose nanofibrils (TOCNs)/graphene oxide (GO) composite, 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation was utilized. For the better dispersion of GO into the matrix of nanofibrillated cellulose (NFC), a unique process combining high-intensity homogenization and ultrasonication was adopted with varying degrees of oxidation and GO percent loadings (0.4 to 2.0 wt%). Despite the presence of carboxylate groups and GO, the X-ray diffraction test showed that the crystallinity of the bio-nanocomposite was not altered. In contrast, scanning electron microscopy showed a significant morphological difference in their layers. The thermal stability of the TOCN/GO composite shifted to a lower temperature upon oxidation, and dynamic mechanical analysis signified strong intermolecular interactions with the improvement in Young’s storage modulus and tensile strength. Fourier transform infrared spectroscopy was employed to observe the hydrogen bonds between GO and the cellulosic polymer matrix. The oxygen permeability of the TOCN/GO composite decreased, while the water vapor permeability was not significantly affected by the reinforcement with GO. Still, oxidation enhanced the barrier properties. Ultimately, the newly fabricated TOCN/GO composite through high-intensity homogenization and ultrasonification can be utilized in a wide range of life science applications, such as the biomaterial, food, packaging, and medical industries.