Browsing by Author "Parker, E. A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Environmental Impact Bonds: a common framework and looking aheadBrand, M. W.; Quesnel, K.; Saksa, P.; Ulibarri, N.; Bomblies, A.; Mandle, L.; Allaire, M.; Wing, O.; Tobin-de la Puente, J.; Parker, E. A.; Nay, J.; Sanders, Brett F.; Rosowsky, D.; Lee, J.; Johnson, K.; Gudino-Elizondo, N.; Ajami, N.; Wobbrock, N.; Adriaens, P.; Grant, Stanley B.; Wright, S.; Gartner, T.; Knight, Z.; Gibbons, J. P. (2021-07-27)A frequent barrier to addressing some of our world’s most pressing environmental challenges is a lack of funding. Currently, environmental project funding largely comes from philanthropic and public sources, but this does not meet current needs. Increased coordination and collaboration between multiple levels and sectors of government, in addition to private sector funding, can help address the environmental funding challenge. New financial tools and strategies can enable this transition and facilitate uptake of innovative solutions. One such mechanism, the Environmental Impact Bond (EIB), is an emerging financial tool with the potential to transformthe environmental funding landscape. However, these financial instruments are not well understood or recognized beyond those actively involved in EIB projects or in the field of conservation finance. As EIBs gain momentum, there is a clear need for a common framework, including definitions and nomenclature, research needs, and outlook for the future. In this paper, we define EIB mechanics, elucidate the difference between EIBs and Green Bonds, and propose a common vocabulary for the field. Drawing on first-hand experience with the few EIBs which have been deployed, we review and assess lessons learned, trends, and paths for the future. Finally, we propose a set of future targets and discuss research goals for the field to unify around. Through this work, we identify a concrete set of research gaps and objectives, providing evidence for EIBs as one important tool in the environmental finance toolbox.
- Predicting Solute Transport Through Green Stormwater Infrastructure With Unsteady Transit Time Distribution TheoryParker, E. A.; Grant, Stanley B.; Cao, Y.; Rippy, Megan A.; McGuire, Kevin J.; Holden, P. A.; Feraud, M.; Avasarala, S.; Liu, H.; Hung, W. C.; Rugh, M.; Jay, J.; Peng, J.; Shao, S.; Li, D. (2021-02)In this study, we explore the use of unsteady transit time distribution (TTD) theory to model solute transport in biofilters, a popular form of nature-based or "green" storm water infrastructure (GSI). TTD theory has the potential to address many unresolved challenges associated with predicting pollutant fate and transport through these systems, including unsteadiness in the water balance (time-varying inflows, outflows, and storage), unsteadiness in pollutant loading, time-dependent reactions, and scale-up to GSI networks and urban catchments. From a solution to the unsteady age conservation equation under uniform sampling, we derive an explicit expression for solute breakthrough during and after one or more storm events. The solution is calibrated and validated with breakthrough data from 17 simulated storms at a field-scale biofilter test facility in Southern California, using bromide as a conservative tracer. TTD theory closely reproduces bromide breakthrough concentrations, provided that lateral exchange with the surrounding soil is accounted for. At any given time, according to theory, more than half of the water in storage is from the most recent storm, while the rest is a mixture of penultimate and earlier storms. Thus, key management endpoints, such as the pollutant treatment credit attributable to GSI, are likely to depend on the evolving age distribution of water stored and released by these systems.