Browsing by Author "Perera, Imara Y."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Biosynthesis and possible functions of inositol pyrophosphates in plantsWilliams, Sarah P.; Gillaspy, Glenda E.; Perera, Imara Y. (Frontiers, 2015-02-12)Inositol phosphates (InsPs) are intricately tied to lipid signaling, as at least one portion of the inositol phosphate signaling pool is derived from hydrolysis of the lipid precursor, phosphatidyl inositol (4,5) bisphosphate. The focus of this review is on the inositol pyrophosphates, which are a novel group of InsP signaling molecules containing diphosphate or triphosphate chains (i.e., PPx) attached to the inositol ring. These PPx-InsPs are emerging as critical players in the integration of cellular metabolism and stress signaling in non-plante ukaryotes. Most eukaryotes synthesize the precursor molecule, myo-inositol (1,2,3,4,5,6)-hexakisphosphate (InsP6), which can serve as a signaling molecule or as storage compound of inositol, phosphorus, and minerals( referred to as phytic acid). Even though plants produce huge amounts of precursor InsP6 in seeds, almost no attention has been paid to whether PPx-InsPs exist in plants, and if so, what roles these molecules play. Recent work has delineated that Arabidopsis has two genes capable of PP-InsP5 synthesis, and PPx-InsPs have been detected across the plant kingdom. This review will detail the known roles of PPx-InsPs in yeast and animal systems, and provide a description of recent data on the synthesis and accumulation of these novel molecules in plants, and potential roles in signaling.
- Certain Malvaceae Plants Have a Unique Accumulation of myo-Inositol 1,2,4,5,6-PentakisphosphatePhillippy, Brian Q.; Perera, Imara Y.; Donahue, Janet L.; Gillaspy, Glenda E. (MDPI, 2015-05-29)Methods used to quantify inositol phosphates in seeds lack the sensitivity and specificity necessary to accurately detect the lower concentrations of these compounds contained in the leaves of many plants. In order to measure inositol hexakisphosphate (InsP6) and inositol pentakisphosphate (InsP5) levels in leaves of different plants, a method was developed to concentrate and pre-purify these compounds prior to analysis. Inositol phosphates were extracted from leaves with diluted HCl and concentrated on small anion exchange columns. Reversed-phase solid phase extraction cartridges were used to remove compounds that give peaks that sometimes interfere during HPLC. The method permitted the determination of InsP6 and InsP5 concentrations in leaves as low as 10 µM and 2 µM, respectively. Most plants analyzed contained a high ratio of InsP6 to InsP5. In contrast, certain members of the Malvaceae family, such as cotton (Gossypium) and some hibiscus (Hibiscus) species, had a preponderance of InsP5. Radiolabeling of cotton seedlings also showed increased amounts of InsP5 relative to InsP6. Why some Malvaceae species exhibit a reversal of the typical ratios of these inositol phosphates is an intriguing question for future research.
- A Role for Inositol Pyrophosphates in the Metabolic Adaptations to Low Phosphate in ArabidopsisLand, Eric S.; Cridland, Caitlin A.; Craige, Branch; Dye, Anna; Hildreth, Sherry B.; Helm, Richard F.; Gillaspy, Glenda E.; Perera, Imara Y. (MDPI, 2021-09-04)Phosphate is a major plant macronutrient and low phosphate availability severely limits global crop productivity. In Arabidopsis, a key regulator of the transcriptional response to low phosphate, phosphate starvation response 1 (PHR1), is modulated by a class of signaling molecules called inositol pyrophosphates (PP-InsPs). Two closely related diphosphoinositol pentakisphosphate enzymes (AtVIP1 and AtVIP2) are responsible for the synthesis and turnover of InsP8, the most implicated molecule. This study is focused on characterizing Arabidopsis vip1/vip2 double mutants and their response to low phosphate. We present evidence that both local and systemic responses to phosphate limitation are dampened in the vip1/vip2 mutants as compared to wild-type plants. Specifically, we demonstrate that under Pi-limiting conditions, the vip1/vip2 mutants have shorter root hairs and lateral roots, less accumulation of anthocyanin and less accumulation of sulfolipids and galactolipids. However, phosphate starvation response (PSR) gene expression is unaffected. Interestingly, many of these phenotypes are opposite to those exhibited by other mutants with defects in the PP-InsP synthesis pathway. Our results provide insight on the nexus between inositol phosphates and pyrophosphates involved in complex regulatory mechanisms underpinning phosphate homeostasis in plants.