Browsing by Author "Peterson, Ellengene H."
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- Analysis of Vestibular Hair Cell Bundle Mechanics Using Finite Element ModelingSilber, Joseph Allan (Virginia Tech, 2002-11-18)The vestibular system of vertebrates consists of the utricle, saccule, and the semicircular canals. Head movement causes deformation of hair cell bundles in these organs, which translate this mechanical stimulus into an electrical response sent to the nervous system. This study consisted of two sections, both utilizing a Fortran-based finite element program to study hair cell bundle response. In the first part, the effects of variations in geometry and material properties on bundle mechanical response were studied. Six real cells from the red eared slider turtle utricle were modeled and their response to a gradually increased point load was analyzed. Bundle stiffness and tip link tension distributions were the primary data examined. The cells fell into two groups based on stiffness. All cells exhibited an increase in stiffness as the applied load was increased, but cells in the stiffer group showed a greater increase. Tip link tensions in the compliant group were approximately 3 times as high as those in the stiffer group. Cells in the stiffer group were larger, with more cilia, and also had a higher stereocilia/kinocilium height ratio than the cells in the other group. The stereocilia/kinocilium height ratio was the most important geometric factor in influencing bundle stiffness. Modeling a bundle as just its middle row of stereocilia resulted in some decrease in stiffness, but more significantly, a stiffness that was virtually constant as applied load increased. Tip link tension distributions showed serial behavior in the core rows of stereocilia and parallel behavior in the outer rows; this trend intensified if the tip link elastic modulus was increased. It was demonstrated that full three-dimensional modeling of bundles is critical for obtaining complete and accurate results. In the second part of the study, tip link ion gates were modeled. Sufficient tension in a tip link caused that link's ion gate to open, increasing the length of the link and causing its tension to decrease or the link to go slack. The two parameters that were varied were tip link elastic modulus and tip link gating distance d (change in length of the link). Bundle stiffness drops of up to 25% were obtained, but only when tip links went slack after gate opening; tip link slackening was dependent on tip link gating distance. Higher tip link modulus resulted in higher stiffness drops. Variable tip link modulus and tip link pre-tensioning were modeled. Variable tip link modulus resulted in increased bundle stiffness, especially under high applied loads, and in some cases, resulted in greater bundle stiffness drops when ion gates opened. Tip link pre-tensioning had no noticeable effect on bundle response. No evidence against inclusion of pre-tensioning or variable tip link elastic modulus was found.
- A Computational Study into the Effect of Structure and Orientation of the Red Ear Slider Turtle Utricle on Hair Bundle StimulusDavis, Julian Ly (Virginia Tech, 2007-11-30)The vestibular system consists of several organs that contribute to ones sense of balance. One set of organs, otoconial organs, have been shown to respond to linear acceleration (1949). Hair bundles (and hair cells), which are the mechano-electric transducers found within otoconial organs, respond to displacement of the overlying otoconial membrane (OM). Structure, position and orientation of the OM within the head may influence the stimulus of hair bundles by changing the deformation characteristics of the OM. Therefore, studying the deformation characteristics of the OM with finite element models presents a unique advantage: the ability to study how different variables may influence the deformation of the OM. Previous OM models have ignored complicated OM geometry in favor of single degree of freedom (De Vries 1951)or distributed parameter models (Grant et al. 1984; Grant and Cotton 1990; Grant et al. 1994). Additionally, OMs have been modeled considering three dimensional geometry (Benser et al. 1993; Kondrachuk 2000; 2001a), however OM layer thicknesses were assumed to be constant. Further, little research has investigated the effect of position and orientation of otoconial organs on the deformation of the OM (Curthoys et al. 1999), due to natural movement of the head. The effect of structure, position and orientation of the utricle of a red ear slider turtle on the stimulation of hair bundles in the OM is investigated here. Using confocal images, a finite element model of the utricle OM is constructed considering its full 3D geometry and varying OM layer thickness. How specific geometric variables, which are missing from other OM models, effect the deformation of the utricle OM is studied. Next, since hair bundles are part of the structure of the OM, their contribution to the deformation of the utricular OM is quantified. Then, using computed tomography of a turtle head and high speed video of turtle feeding strikes, acceleration at the utricle during natural motion is estimated. Finally, the effects of orientation of the utricle in the head on the stimulus of hair bundles within the organ is investigated. In summary, a model and methods are developed through which deformation of the turtle utricle OM through natural movements of the head may be studied. Variables that may contribute to utricle OM deformation are investigated. Utricle OM geometry, hair bundles, position and orientation all play a role in utricle OM deflection and therefore hair bundle stimulus. Their effects are quantified and their roles are discussed in this dissertation.
- Experimental Measurement of the Utricle's Dynamic Response and the Mechanoelectrical Characterization of a Micron-Sized DIBDunlap, Myles Derrick (Virginia Tech, 2013-06-12)Within the vestibular system are otolith organs, both the utricle and saccule. The primary function of these organs is to transduce linear head accelerations and static head tilts into afferent signals that are sent to the central nervous system for the utilization of image fixation, muscle posture control, and the coordination of musculoskeletal movement in dynamic body motion. The utricle of the red ear slider turtle was studied in this dissertation. The turtle's utricle is composed of several layers. The base layer contains a set of neural receptor cells, called hair cells, and supporting cells. The three layers above the base layer compose the utricle's otoconial membrane (OM) and are: 1.) a saccharide gelatinous layer, 2.) a column filament layer, and 3.) a calcite and aragonite otoconial crystal layer. The primary goal of this research was to study the dynamic response of the turtle's OM to a variety of natural inertial stimuli in order to characterize its inherent mechanical properties of natural frequency ("n), damping ("), and shear modulus (G). The medial-lateral (ML) and anterior-posterior (AP) anatomical axes parameters were measured for the utricle. The ML axis median with 95% confidence intervals was found to be "n = 374 (353, 396) Hz, " = 0.50 (0.47, 0.53), and G = 9.42 (8.36, 10.49) Pa. The AP axis median with 95% confidence intervals was found to be "n = 409 (390, 430) Hz, " = 0.53 (0.48, 0.57), and G = 11.31 (10.21, 12.41). Nonlinearites were not found to occur in the OM for the tested inertial stimuli and no significant difference was found between the mechanical properties for the ML and AP axes. Additionally, this research presents the initial steps to form a novel bio-inspired accelerometer based on the morphology of the utricle. The primary transducer element for this possible otolith organ inspired accelerometer design is a droplet interface bilayer (DIB). A DIB is a lipid bilayer that is formed when the interface of two aqueous droplets, that contain free-floating lipids, are joined. The aqueous droplets are suspended in a nonpolar environment (oil) and the oil/water interface forms a lipid monolayer. This research developed and used an experimental test setup to characterize the mechanoelectrical characteristics of a micron-sized DIB. This information, along with examples in the text, could be used to further design the aforementioned accelerometer.
- Experimental Measurements of Vestibular Hair Bundle Stiffness in the Red Ear Slider Turtle UtricleSilverman, Jennifer Mary (Virginia Tech, 2002-07-31)The ear is the organ used for hearing and maintaining equilibrium. In the inner ear, the vestibular system is responsible for the sense of balance. The main organs of the vestibular system are the semicircular canals, the saccule, and the utricle. Within each of the vestibular organs, sensory receptors in the form of hair cells detect motion and send a message to the brain for interpretation. Hair cells found in different parts of the inner ear are structurally different and are mechanically specialized to perform different functions. In this study, the linear and torsional stiffnesses were measured for hair cells located in the red ear slider turtle utricle. The system used to measure the stiffnesses was composed of a glass whisker (attached to a pipette) used to produce a force on the tip of the bundle, an extrinsic Fabry-Perot interferometer (EFPI) to measure the displacement of the pipette, and a photoelectronic motion transducer (PMT) to measure the displacement of the bundle. Using the measured values of whisker stiffness, whisker displacement, and bundle displacement, the stiffness of the bundle was calculated using statics. For each bundle tested, the location of the bundle was determined by measuring its position from a landmark in the utricle, the line of polarity reversal, characterized by a 180o change in direction of the hair bundles. Stiffness results showed that the linear stiffness of a bundle increased in the area surrounding the line of polarity reversal, otherwise referred to as the striolar region (average linear stiffness of 2.27 E-04 N/m). The average linear stiffness value of bundles found lateral to the striolar region was 6.30 E-05 N/m and in the region medial to the striolar region was 1.16 E-04 N/m. A wide range of linear stiffnesses were found in hair cells medial to the striolar region. There was no correlation found between the torsional stiffness of a bundle and its position and the height of a bundle and its linear or torsional stiffness. As the force applied to a hair bundle was increased, the measured linear stiffness of the bundle also increased.
- A fiber optic interferometer for measuring sub-micrometer displacements of ciliary bundlesBarrett, Matthew Donald (Virginia Tech, 1995-03-18)The inner ear contains cells with ciliary bundles that have been identified as sites of mechanoelectrical transduction; they take a mechanical stimuli and convert it to an electrical response. The ciliary bundles vary structurally within the organs of the inner ear; this structural difference may play a role in the mechanical properties of each bundle. A relationship between the structure and the mechanics of the ciliary bundle can be found by studying structurally diverse bundles. To explore this relationship, a system was designed to mechanically stimulate the ciliary bundles in normal physiological range and measure their displacement. An extrinsic Fabry-Perot interferometer (EFPI) was developed to measure the response of a ciliary bundle that is subjected to a force applied by a glass whisker. 'Imitation bundles', similar in stiffness to living ciliary bundles, were made to test the system. The stiffness of an 'imitation bundle' was first determined by suspending styrene beads from its tip and optically measuring the resultant displacement. Then the EFPI was also used to determine the stiffness. The EFPI compared well to the stiffness found using the styrene beads; the largest difference between the two methods was 130/0. The EFPI was also tested in water to ensure its operation in the tissue environment; this test was successful in that it was able to measure displacements in a bundle's normal physiological range. With both of the tests showing good results, we conclude that our system can be used to measure the stiffness of the ciliary bundles located in the inner ear.
- Hair Bundle Stiffness in the Turtle Utricle: Structural and Regional VariationsSpoon, Corrie E. (Virginia Tech, 2007-11-19)Vestibular hair cells are mechanotransducing sensory receptors in the vertebrate inner ear that detect movement and orientation of the head with respect to gravity. The morphologies of their ciliary bundles vary greatly for different species, endorgans, and within the same endorgan. Bundle morphology in the turtle utricle, like other species, demonstrates highly organized regional variations. These structural differences in bundles impact their mechanical behavior and the process of mechanotransduction. To further understanding of the mechanical behavior of hair bundles, this work experimentally measured the stiffness of bundles with differing morphology, the stiffness contribution of interciliary links and the mechanical properties of the kinocilium in the turtle utricle. The stiffness of hair bundles of varying structure and location along a medial to lateral transect of the utricle was examined. Bundle stiffness was greatest in the striola and demonstrated a systematic decline with location from the line of polarity reversal. The average stiffness of bundles in the striola and extrastriola were 82 ± 46 (n=48) and 9 ± 5 (n=25) µN/m, respectively. The stiff and weak bundles demonstrated characteristic morphologies. The stiffest bundles have short kinocilium, tall stereocilia, and ratios of kinocilium to tallest stereocilia height (KS) close to 1. In contrast, the compliant bundles have tall kinocilium, short stereocilia, and KS ratios ranging from 1.6 – 8. The stiffer bundles also tend to have longer array lengths and steeper slopes. Measurements of bundle stiffness in the turtle utricle are lower than those previously reported which may be attributed to morphological differences between species. The stiffness contributions of the interciliary links were also examined through their selective removal with exposure to the Ca²⁺ chelator BAPTA and the protease subtilisin. BAPTA treatment reportedly breaks tip, kinocilial and ankle links while subtilisin breaks the shaft and ankle links. Following BAPTA and subtilisin treatments, bundle stiffness reduced by 65 ± 10% and 63 ± 11%, respectively. The mechanical properties of the kinocilium were measured with novel techniques. Flexural rigidity (EI) was measure while the kinocilium was fixed at the height of the tallest stereocilia using a glass supporting probe. Through both force deflection and a high speed video technique, measured values of EI ranged from 1460 – 6150 pN·µm2. The rotational stiffness of the kinocilium about its apical insertion was also measured. Bundles were treated with BAPTA to break the kinocilial links and separate the kinocilium from neighboring stereocilia. Using a force deflection technique, the rotational stiffness of the kinocilium was measured as 120 ± 17 pN·µm/rad.
- Mechanical modeling of vestibular hair cell bundlesCotton, John R. (Virginia Tech, 1998-01-30)Hair cells are transducers found found in the inner ear of vertebrates. They convert a mechanical signal, detected by the deflection of a bundle of cilia extending from their top surface, into an electrochemical signal. This dissertation studies the mechanical influence of the structure and materials on the function of the cells. I introduce two methods to conduct the mechanical analysis. The first uses strength of materials formulae to solve the simplified hair cell bundle models. The second is a finite element analysis, used to better account for the observed complexity of the structure. I then use these two techniques to build a fundamental understanding of the hair cell bundle structure. By first studying simplified models, then adding complexity, the effects of geometric and material variation can be deduced. I then study three actual bundles. These are all taken from vestibular organs of turtles, two from the posterior semicircular canal and one from the utricle. I present estimations of stiffness, tip link tensions, and nonlinear response. Finally, I investigate a single cilium forced by a fluid flow. The problem is solved by finite difference technique. Three different initial conditions are solved.
- Mechanical properties and consequences of stereocilia and extracellular links in vestibular hair bundlesNam, Jong-Hoon; Cotton, John R.; Peterson, Ellengene H.; Grant, John Wallace (CELL PRESS, 2006-04-01)Although knowledge of the. ne structure of vestibular hair bundles is increasing, the mechanical properties and functional significance of those structures remain unclear. In 2004, Bashtanov and colleagues reported the contribution of different extracellular links to bundle stiffness. We simulated Bashtanov's experimental protocol using a three-dimensional finite element bundle model with geometry measured from a typical striolar hair cell. Unlike any previous models, we separately consider two types of horizontal links: shaft links and upper lateral links. Our most important results are as follows. First, we identified the material properties required to match Bashtanov's experiment: stereocilia Young's modulus of 0.74 GPa, tip link assembly (gating spring) stiffness of 5300 pN/μm, and the combined stiffness of shaft links binding two adjacent stereocilia of 750 similar to 2250 pN/μm. Second, we conclude that upper lateral links are likely to have nonlinear mechanical properties: they have minimal stiffness during small bundle deformations but stiffen as the bundle deflects further. Third, we estimated the stiffness of the gating spring based on our realistic three-dimensional bundle model rather than a conventional model relying on the parallel arrangement assumption. Our predicted stiffness of the gating spring was greater than the previous estimation.