Browsing by Author "Peterson, Paul R."
Now showing 1 - 10 of 10
Results Per Page
Sort Options
- Agronomy HandbookBrann, Daniel Edward; Abaye, Azenegashe Ozzie; Peterson, Paul R.; Chalmers, David R.; Whitt, David L.; Chappell, Glenn F.; Herbert, D. Ames Jr.; McNeill, Sam; Baker, James C.; Donohue, Stephen J.; Alley, Marcus M.; Evanylo, Gregory K.; Mullins, Gregory L.; Hagood, Edward Scott; Stallings, Charles C.; Umberger, Steven H.; Swann, Charles W.; Reed, David T.; Holshouser, David L. (Virginia Cooperative Extension, 2009-05-01)Provides readers with a source of agronomic information such as field crops, turfgrasses, variety selection, seed science, soil management, nutrient management and soil suitability for urban purposes that does not change frequently - pesticide and varietal information changes frequently and is therefor not included.
- Compatibility, Yield, and Quality of Matua Prairie Grass, Bromus willdenowii (Kunth), with LegumesGuay, Jennifer Fincham (Virginia Tech, 2003-12-08)Matua prairie grass has a potential to extend the grazing season in Virginia due to its higher early spring and fall production. However, little is known about the compatibility of Matua prairie grass with legumes or the effects of legumes on the yield and quality of Matua prairie grass/legume mixtures. An experiment was conducted in 1998 and 1999 to investigate the botanical composition, yield, and chemical composition of Matua prairie grass grown with legumes. Legume treatments consisting of ladino clover (Trifolium repens), red clover (Trifolium pratense), alfalfa (Medicago sativa), and annual lespedeza (Lespedeza stipulacea) were drilled into a Matua prairie grass stand. Nitrogen was applied once each fall at two treatment levels of 0 or 84 kg/ha. The experiment was arranged in a randomized split block design with four replications. Legume treatments had no effect on percentage Matua prairie grass or total dry matter yield in 1998. However, in 1999 the ladino clover and red clover treatments increased (P<0.05) total dry matter yield, but also resulted in a substantial decrease (P<0.05) in percentage Matua prairie grass. Nitrogen application in the fall of 1998 had a residual effect (P<0.05) on the percentage Matua prairie grass and yield in 1999. The highest response to nitrogen fertilization occurred in the harvest immediately after fertilization, in October of 1999, which resulted in the largest increase (P<0.05) in percentage Matua prairie grass and yield, and the greatest decrease (P<0.05) in percentage legumes. The legume and nitrogen treatments similarly influenced the chemical composition of the Matua prairie grass/legume mixed forage. Ladino clover, red clover, and alfalfa treatments generally improved forage quality as indicated by a decrease (P<0.05) in NDF, ADF, hemicellulose, and cellulose, and an increase (P<0.05) in CP and IVDMD. Nitrogen fertilization did not influence the chemical composition of the forages to the same extent as the legume treatments, as a decrease in fiber components and an increase in CP and IVDMD were observed due to nitrogen. Overall, alfalfa appeared to be most compatible with Matua prairie grass, and the incorporation of alfalfa into a Matua prairie grass stand resulted in some improvements in total dry matter yield and nutritive value of the forage, without the detrimental suppression of Matua prairie grass.
- Compatibility, Yield, and Quality of Warm-Season Grass-Legume MixturesEl Hadj, Meriem (Virginia Tech, 2000-06-09)The lack of consistent summer pasture supply is a major limitation to livestock production in the mid-Atlantic region. Perennial warm-season grasses might provide a solution if managed for high quality. Experiments were conducted on separate well-established stands of Caucasian bluestem and 'Cave-in-Rock' switchgrass at the Kentland Farm near Blacksburg, VA. Stages of grass maturity at harvest simulating pasture and hay systems were tested. Six interseeded legume species and two grass monoculture checks, one with 56 kg N/ha applied in spring and after each harvest, the other with no N, were imposed as sub-plots. Legume species included alfalfa, red clover, sericea lespedeza, annual lespedeza, Illinois bundleflower, and purple prairieclover. Inter-seeded legumes contributed a significant amount to yield and quality of perennial warm-season grasses in the legume-establishment year. In the year after establishment, grass mixtures with alfalfa, red clover, and, for switchgrass, sericea lespedeza yielded as much forage as N-fertilized grasses. Alfalfa and red clover altered the distribution of yield of the grasses, and may not be as compatible with perennial warm-season grasses as sericea lespedeza in the long-term. Interseeded legumes improved quality considerably in the second year.
- Making the Most of Tall Fescue in VirginiaSmith, S. Ray; Hall, John B.; Johnson, Glenn D.; Peterson, Paul R. (Virginia Cooperative Extension, 2009)Tall fescue is a cool-season perennial that is well adapted to Virginia's soils and climate. It is the predominant forage species on over one million acres of hay and pastureland in Virginia.
- 'Matua' Prairie Grass: Bromus wildenowiiAbaye, Azenegashe Ozzie; Guay, Jennifer F.; Peterson, Paul R.; Mulkey, Vanessa; Hutton, Steve; Smith, S. Ray (Virginia Cooperative Extension, 2009)This is an overview of Matua prairie grass and its usage as forage in Virginia.
- Nutritional Value of Warm- and Cool-Season Grasses for RuminantsMundie, Benjamin Scott (Virginia Tech, 1999-05-12)A metabolism trial was conducted to compare the nutritional value of: 1)"Quickstand" bermudagrass [Cynodon dactylon (L.) Pers.], 2)caucasian bluestem [Bothriochloa caucasia (Trin.) C.E. Hubb], 3)tall fescue (Festuca arundinacea Schreb.), and 4)orchardgrass (Dactylis glomerata L.). The warm-season grasses (bermudagrass and bluestem) were higher (P < .01) in fiber components than the cool-season grasses (tall fescue and orchardgrass). Bluestem was lower (P < .001) in CP, hemicellulose, and ash, and higher in NDF (P < .001), ADF (P < .001), cellulose (P < .001), and lignin (P < .01) than bermudagrass. The warm-season grasses were lower in the apparent digestibility of DM (P < .001), NDF (P < .01), ADF (P < .05), cellulose (P < .05), and hemicellulose (P < .01) than cool-season grasses. Apparent digestibility of NDF (P < .001), ADF (P < .001), cellulose (P < .01), and hemicellulose (P < .01) was higher for bluestem than bermudagrass. Fescue was higher (P < .001) in apparent digestibility of DM and CP and lower (P < .01) in apparent digestibility of NDF, ADF, cellulose, and hemicellulose than orchardgrass. Lambs fed bluestem had lower (P < .05) N retention than those fed bermudagrass, when expressed as g/d. Lambs fed fescue had higher (P < .001) N retention, than those fed orchardgrass. When expressed as a percent of intake or absorption, N retention values were similar among treatments. The results of this study suggest that cool-season grasses are of higher nutritional value than warm-season grasses.
- Overseeded Bermudagrass Fairway Performance and Post Dormancy Transition as Influenced by Winter Overseeding Practices and Trinexapac-ethylWharton, Samuel Matthew (Virginia Tech, 1999-12-03)Dormant bermudagrass (Cynodon dactylon) fairways become matted down and thinned out from winter traffic. This appears to be more of a problem on the coarser textured, winter hardy, improved varieties (e.g., 'Midiron' and 'Vamont') typically used in the colder regions of the upper transition zone. Winter overseeding with cool-season species can improve dormant bermudagrass winter and spring quality. However, bermudagrass persistence can decline in golf course fairways overseeded with ryegrasses (Lolium sp.) for winter quality if ryegrasses persist due to cool spring temperatures, use of persistent ryegrass varieties, and management practices that favor ryegrasses over bermudagrass. Winter overseeding practices that facilitate a reliable transition from overseeded species to bermudagrass would enable transition zone golf courses to overseed bermudagrass fairways for winter-spring quality while allowing the bermudagrass turf to persist without excessive competition from cool-season overseeded species. Studies were conducted to determine the effects of perennial ryegrass (L. perenne) and annual ryegrass (L. multiflorum) seeding rates on winter-spring quality and subsequent transition to bermudagrass in two transition zone locations. Studies were also conducted to determine the potential influence trinexapac-ethyl (TE), a plant growth regulator used by many professional turfgrass managers to suppress foliar growth, has on encouraging overseeded species to transition to bermudagrass. These studies demonstrated that higher overseeding rates (448 and 896 kg ha-1) can provide greater winter-spring quality but do not enhance transition to bermudagrass over lower overseeding rates (224 kg ha-1). This was especially evident in cooler transition zone climate, where higher overseeding rates delayed transition to bermudagrass. Annual ryegrass transitioned to bermudagrass better than perennial ryegrass, but the overseeded winter-spring quality of annual ryegrass was unacceptable. Perennial ryegrass varieties differed in transition. Some perennial ryegrass varieties were too persistent to fully transition to bermudagrass even with the onset of summer temperatures. Intermediate ryegrasses (L. multiflorum x L. perenne) appeared to be promising alternatives to overseeding perennial ryegrass in areas of the transition zone where summer reliance on bermudagrass turf is strongly preferred. Trinexapac-ethyl, when applied to overseeded perennial ryegrasses, did not enhance overseeded ryegrass transition to bermudagrass. Spring TE applications to overseeded perennial ryegrasses were found to reduce or delay their transition to bermudagrass.
- Population dynamics, mortality factors, and pest status of alfalfa weevil in VirginiaKuhar, Thomas P. (Virginia Tech, 2000-02-08)The alfalfa weevil, Hypera postica (Gyllenhal) (Coleoptera: Curculionidae), remains a serious pest in Virginia despite being under complete biological control in the northeastern U.S. In 1996, a survey of 187 alfalfa fields in Virginia was initiated to determine the current pest status of alfalfa weevil and incidence of natural enemies. Fields located in the Piedmont region of the state had significantly higher alfalfa weevil pressure than those in the Shenandoah Valley and southwestern region. The dominant natural enemy of alfalfa weevil larvae was the parasitoid, Bathyplectes anurus (Thomson). Larval parasitization was lower in the Piedmont compared with the other regions. The entomopathogenic fungus, Zoophthora phytonomi, also killed weevil larvae in all regions. A more intensive ecological investigation of alfalfa weevil population dynamics and mortality was initiated in 1997 to determine why H. postica remains a pest in Virginia, particularly in the Piedmont region. Nine alfalfa weevil populations from three geographic locations were sampled and measured over a period of two years. Results showed that warmer winter temperatures in the Piedmont region contributed to a higher rate of alfalfa weevil oviposition compared with the Shenandoah Valley and southwestern mountains. Parasitization of adult weevils by Microctonus aethiopoides (Loan) was low in all regions of Virginia relative to rates reported in the northeastern U.S. This also contributes to relatively high alfalfa weevil fecundity in Virginia because a greater percentage of adults reproduce. Phenological asynchrony between M. aethiopoides and the alfalfa weevil may explain the low parasitism. The 1st generation of M. aethiopoides adults did not emerge until most of the overwintering alfalfa weevil adults had reproduced and died. A majority of alfalfa weevil eggs were laid before January at all locations in Virginia. Approximately half of the egg population survived to contribute to spring larval infestations. In the northern U.S., very few alfalfa weevil eggs survive the winter, and larval populations result primarily from spring-laid eggs. Mortality of larvae was high in Virginia and comparable to that reported in other states. Bathyplectes anurus was well-synchronized with alfalfa weevil and killed a high percentage of larvae.
- The Virginia alfalfa variety report : a 5-year summary (1995-1999)Peterson, Paul R.; Starner, David E.; Wilkinson, W. B.; Dixon, Denton R.; Hutton, Steve; Benson, Gordon B.; White, Harlan E. (Virginia Cooperative Extension, 2000)
- The Virginia Alfalfa Variety Report: a Five-Year Summary (1999-2003)Smith, S. Ray; Teutsch, Christopher D.; Peterson, Paul R.; Starner, David E.; Wilkinson, W. B.; Dixon, Denton R.; Hutton, Steve; Benson, Gordon B.; Johnson, Glenn D. (Virginia Cooperative Extension, 2009)This report is a summary of alfalfa variety trials performed at Virginia Tech Agricultural Research and Extension Centers from 1999 through 2003.