Browsing by Author "Philen, Michael K."
Now showing 1 - 20 of 57
Results Per Page
Sort Options
- 4D combustion and flow diagnostics based on tomographic chemiluminescence (TC) and volumetric laser-induced fluorescence (VLIF)Wu, Yue (Virginia Tech, 2016-12-02)Optical diagnostics have become indispensable tools for the study of turbulent flows and flames. However, optical diagnostics developed in the past have been primarily limited to measurements at a point, along a line, or across a two-dimensional (2D) plane; while turbulent flows and flames are inherently four-dimensional (three-dimensional in space and transient in time). As a result, diagnostic techniques which can provide 4D measurement have been long desired. The purpose of this dissertation is to investigate two of such 4D diagnostics both for the fundamental study of turbulent flow and combustion processes and also for the applied research of practical devices. These two diagnostics are respectively code named tomographic chemiluminescence (TC) and volumetric laser induced fluorescence (VLIF). For the TC technique, the emission of light as the result of combustion (i.e. chemiluminescence) is firstly recorded by multiple cameras placed at different orientations. A numerical algorithm is then applied on the data recorded to reconstruct the 4D flame structure. For the VLIF technique, a laser is used to excite a specific species in the flow or flame. The excited species then de-excite to emit light at a wavelength longer than the laser wavelength. The emitted light is then captured by optical sensors and again, the numerical algorithm is applied to reconstruct the flow or flame structure. This dissertation describes the numerical and experimental validation of these two techniques, and explores their capabilities and limitations. It is expected that the results obtained in this dissertation lay the groundwork for further development and expanded application of 4D diagnostics for the study of turbulent flows and combustion processes.
- Acoustic Analysis of Spacecraft Cavities using the Boundary Element MethodMarshall, Peter Johannes (Virginia Tech, 2018-06-05)Spacecraft structures are subject to a series of load environments during their service life, with the most severe of these occurring during the spacecraft's launch and ascension through the atmosphere. In particular, acoustic loads imposed on stowed satellites within the launch vehicle fairing can result in high mechanical loads on sensitive spacecraft hardware. These acoustic loads have the potential to damage important components and as such it is necessary to accurately characterize and predict the acoustic launch environment for a given mission. This research investigates the Sound Pressure Level (SPL) that can be measured in and around spacecraft cavities resulting from a known excitation and the resultant structural responses. Linear finite element analysis (FEA) is coupled with the Boundary Element method (BEM) to analyze spacecraft acoustic environments and corresponding structural responses at low frequencies on the order of the structural modes. Analytical capability for predicting acoustic environments inside the launch vehicle has improved significantly in recent years; however, while it is easy to perform an analysis and obtain results, the modeling effort can become unnecessarily complicated and analytical data can be hard to interpret. This work seeks to alleviate unnecessary complexity in the low-frequency regime of acoustic modeling by examining the fundamentals of coupled BEM-FEM analysis and applying simplification to a spacecraft model where possible to achieve results verified against direct field acoustic testing (DFAT) methods.
- Analysis and Design of a Morphing Wing Tip using Multicellular Flexible Matrix Composite Adaptive SkinsHinshaw, Tyler (Virginia Tech, 2009-07-01)The material presented in this thesis uses concepts of the finite element and doublet panel methods to develop a structural-aerodynamic coupled mathematical model for the analysis of a morphing wing tip composed of smart materials. Much research is currently being performed within many facets of engineering on the use of smart or intelligent materials. Examples of the beneficial characteristics of smart materials might include altering a structure's mechanical properties, controlling its dynamic response(s) and sensing flaws that might progressively become detrimental to the structure. This thesis describes a bio-inspired adaptive structure that will be used in morphing an aircraft's wing tip. The actuation system is derived from individual flexible matrix composite tube actuators embedded in a matrix medium that when pressurized, radical structural shape change is possible. A driving force behind this research, as with any morphing wing related studies, is to expand the limitations of an aircraft's mission, usually constrained by the wing design. Rather than deploying current methods of achieving certain flight characteristics, changing the shape of a wing greatly increases the flight envelope. This thesis gives some insight as to the structural capability and limitations using current numerical methods to model a morphing wing in a flow.
- Analysis of Composites using PeridynamicsDegl'Incerti Tocci, Corrado (Virginia Tech, 2014-02-07)Since the last century a lot of effort has been spent trying to analyze damage and crack evolution in solids. This field is of interest because of the many applications that require the study of the behavior of materials at the micro- or nanoscale, i.e. modeling of composites and advanced aerospace applications. Peridynamics is a recently developed theory that substitutes the differential equations that constitute classical continuum mechanics with integral equations. Since integral equations are valid at discontinuities and cracks, peridynamics is able to model fracture and damage in a more natural way, without having to work around mathematical singularities present in the classical continuum mechanics theory. The objective of the present work is to show how peridynamics can be implemented in finite element analysis (FEA) using a mesh of one-dimensional truss elements instead of 2-D surface elements. The truss elements can be taken as a representation of the bonds between molecules or particles in the body and their strength is found according to the physical properties of the material. The possibility implementing peridynamics in a finite element framework, the most used method for structural analysis, is critical for expanding the range of problems that can be analyzed, simplifying the verification of the code and for making fracture analysis computationally cheaper. The creation of an in-house code allows for easier modifications, customization and enrichment if more complex cases (such as multiscale modeling of composites or piezoresistive materials) are to be analyzed. The problems discussed in the present thesis involve plates with holes and inclusions subjected to tension. Displacement boundary conditions are applied in all cases. The results show good agreement with theory as well as with empirical observation. Stress concentrations reflect the behavior of materials in real life, cracks spontaneously initiate and debonding naturally happens at the right locations. Several examples clearly show this behavior and prove that peridynamics is a promising tool for stress and fracture analysis.
- Autonomous Underwater Vehicle Propulsion DesignDuelley, Richard Skyler (Virginia Tech, 2010-08-12)The goal of this design process was to achieve the most efficient propulsive system for the candidate autonomous underwater vehicle (AUV) as possible. A mathematical approach, using fundamental motor equations and derived quantities, was used to characterize and select an efficient brushless electric motor for the propulsion system. A program developed at MIT, Massachusetts Institute of Technology, called OpenProp versions 1 and 2.3 was utilized to design a custom propeller that maximizes the efficiency of the system. A brushless electric motor was selected for the candidate AUV based on a survey of available off the shelf motors and a mathematical characterization process. In parallel with the motor characterization a propeller design was optimized using OpenProp v1 to perform a parametric analysis. OpenProp v2.3 was then used to design a unique propeller for the selected motor. The propeller design resulted in a final propeller with an efficiency of 79.93%. The motor characterization process resulted in two candidate motors being selected, the NeuMotor 1925-3Y and NeuMotor 1521-10.5Y, for in house testing and evaluation. A total propulsive system efficiency of between 44% and 46% was achieved depending on which motor is selected for the final design.
- Bilayer Network ModelingCreasy, Miles Austin (Virginia Tech, 2011-08-08)This dissertation presents the development of a modeling scheme that is developed to model the membrane potentials and ion currents through a bilayer network system. The modeling platform builds off of work performed by Hodgkin and Huxley in modeling cell membrane potentials and ion currents with electrical circuits. This modeling platform is built specifically for cell mimics where individual aqueous volumes are separated by single bilayers like the droplet-interface-bilayer. Applied potentials in one of the aqueous volumes will propagate through the system creating membrane potentials across the bilayers of the system and ion currents through the membranes when proteins are incorporated to form pores or channels within the bilayers. The model design allows the system to be divided into individual nodes of single bilayers. The conductance properties of the proteins embedded within these bilayers are modeled and a finite element analysis scheme is used to form the system equations for all of the nodes. The system equation can be solved for the membrane potentials through the network and then solve for the ion currents through individual membranes in the system. A major part of this work is modeling the conductance of the proteins embedded within the bilayers. Some proteins embedded in bilayers open pores and channels through the bilayer in response to specific stimuli and allow ion currents to flow from one aqueous volume to an adjacent volume. Modeling examples of the conductance behavior of specific proteins are presented. The examples demonstrate aggregate conductance behavior of multiple embedded proteins in a single bilayer, and at examples where few proteins are embedded in the bilayer and the conductance comes from a single-channel or pore. The effect of ion gradients on the single channel conductance example is explored and those effects are included in the single-channel conductance model. Ultimately these conductance models are used with the system model to predict ion currents through a bilayer or through part of a bilayer network system. These modeling efforts provide a modeling tool that will assist engineers in designing bilayer network systems.
- Broadband Acoustic Liner Optimization Study Using Novel Poro-elastic MaterialsMitchell, Kelsey Ryan (Virginia Tech, 2015-06-16)With the continual challenges associated with reducing aircraft engine noise, there is need for acoustic liner configurations that target broadband performance. This thesis experimentally and analytically investigates passive noise control methods to improve broadband frequency attenuation through various acoustic liner designs. The inclusion of acoustic metamaterials within these liners is examined and optimized. The metamaterials studied consist of resonant and non-resonant materials which include porous foams, microperforated plates (MPP), and embedded aluminum masses. Through finite element analysis, the understanding of the physics behind acoustics as well as aeroacoustics inspire their design. Sensitivity studies on the overall liner shape, facesheet properties, poro-elastic material properties, MPP's, as well as size and placement of embedded masses assist in successfully achieving broadband attenuation. Within the finite element study, an optimization tool will provide additional assistance in quantifying critical system parameters within the designs by minimizing the sum of the transmitted sound intensity over the design frequency bandwidth and hence maximizing attenuation. Broadband frequency absorption and attenuation is successfully achieved within the frequency range of 400-2600 Hz through the design of a varying depth optimized acoustic liner as well as a metamaterial-inspired liner.
- Combined Compression and Shear Structural Evaluation of Stiffened Panels Fabricated Using Electron Beam Freeform FabricationNelson, Erik Walter (Virginia Tech, 2008-06-17)Unitized aircraft structures have the potential to be more efficient than current aircraft structures. The Electron Beam Freeform Fabrication (EBF3) process can be used to manufacture unitized aircraft structures. The structural efficiency of blade stiffened panels made with EBF3 was compared to panels made by integrally machining from thick plate. The panels were tested under two load cases in a combined compression-shear load test fixture. One load case tested the panels' responses to a higher compressive load than the shear load. The second load case tested the panels' responses to an equal compressive and shear load. Finite element analysis was performed to compare with the experimental results. The EBF3 panels failed at a 18.5% lower buckling load than the machined panels when loaded mostly in compression but at an almost two times higher buckling load than the machined panels when the shear matched the compressive load. The finite element analysis was in good agreement with the experimental results prior to buckling. The results demonstrate that the EBF3 process has the capabilities of manufacturing stiffened panels that behave similarly to machined panels prior to buckling. Once the EBF3 panels buckled, the buckled shape of the EBF3 panels was different from the machined panels, generally buckling in the opposite direction of what was observed with the machined panels. This was also expected based on the finite element analysis. The different post-buckling response between the two manufacturing techniques was attributed to the residual stress and associated distortion induced during the EBF3 manufacturing process.
- Combined Experimental and Numerical Study of Active Thermal Control of Battery ModulesHe, Fan (Virginia Tech, 2015-04-16)Lithium ion (Li-ion) batteries have been identified as a promising solution to meet the increasing demands for alternative energy in electric vehicles (EVs) and hybrid electric vehicle (HEVs). This work describes experimental and numerical study of thermal management of battery module consisting of cylindrical Li-ion cells, with an emphasis on the use of active control to achieve optimal cooling performance with minimal parasitic power consumption. The major contribution from this work is the first experimental demonstration (based on our review of archival journal and conference literature) and the corresponding analysis of active thermal control of battery modules. The results suggest that the active control strategy, when combined with reciprocating cooling flow, can reduce the parasitic energy consumption and cooling flow amount substantially. Compared with results using passive control with unidirectional cooling flow, the parasitic energy consumption was reduced by about 80%. This contribution was achieved in three steps, which was detailed in this dissertation in chapters 2, 3, and 4, respectively. In the first step, an experimental facility and a corresponding CFD model were developed to capture the thermal behavior of multiple battery cells. Based on the experimental and CFD results, a reduced-order model (ROM) was then developed for active monitoring and control purposes. In the second step, the ROM was parameterized and an observer-based control strategy was developed to control the core temperature of battery cells. Finally, based on the experimental facility and the ROM model, the active control of a battery module was demonstrated. Each of these steps represents an important facet of the thermal management problem, and it is expected that the results and specifics documented in this dissertation lay the groundwork to facilitate further study.
- Constrained Control of Complex Helicopter ModelsOktay, Tugrul (Virginia Tech, 2012-03-19)Complex helicopter models that include effects typically ignored in control models, such as an analytical formulation for fuselage aerodynamics, blade lead-lagging and flexibility, and tail rotor aerodynamics, are derived. The landing gear, horizontal tailplane, a fully articulated main rotor, main rotor downwash, and blade flapping are also modeled. The modeling process is motivated by the desire to build control oriented, physics based models that directly result in ordinary differential equations (ODE) models which are sufficiently rich in dynamics information. A physics based model simplification procedure, which is called new ordering scheme, is developed to reduce the number of terms in these large nonlinear ODE models, while retaining the same number of governing equations of motion. The resulting equations are trimmed and linearized around several flight conditions (i.e. straight level flight, level banked turn, and helical turn) using Maple and Matlab. The resulting trims and model modes are validated against available literature data. The linearized models are first used for the design of variance constrained controllers with inequality constraints on outputs or inputs, output variance constrained controllers (OVC) and input variance constrained controllers (IVC), respectively. The linearized helicopter models are also used for the design of online controllers which exploit the constrained model predictive control (MPC) theory. The ability of MPC to track highly constrained, heterogeneous discontinuous trajectories is examined. The performance and robustness of all these controllers (e.g. OVC, IVC, MPC) are thoroughly investigated with respect to several modeling uncertainties. Specifically, for robustness studies, variations in the flight conditions and helicopter inertial properties, as well as blade flexibility effects, are considered. Furthermore, the effectiveness of adaptive switching between controllers for the management of sensor failure during helicopter operations is studied using variance constrained controllers. Finally, the simultaneous design of the helicopter and control system is examined using simultaneous perturbation stochastic approximation in order to save active control energy.
- Continual Traveling waves in Finite Structures: Theory, Simulations, and ExperimentsMalladi, Vijaya Venkata Narasimha Sriram (Virginia Tech, 2016-07-06)A mechanical wave is generated as a result of an external force interacting with the well-defined medium and it propagates through that medium transferring energy from one location to another. The ability to generate and control the motion of the mechanical waves through the finite medium opens up the opportunities for creating novel actuation mechanisms not possible before. However, any impedance to the path of these waves, especially in the form of finite boundaries, disperses this energy in the form of reflections. Therefore, it is impractical to achieve steady state traveling waves in finite structures without any reflections. In-spite of all these conditions, is it possible to generate waveforms that travel despite reflections at the boundaries? The work presented in this thesis develops a framework to answer this question by leveraging the dynamics of the finite structures without any active control. Therefore, this work investigates how mechanical waves are developed in finite structures and identifies the factors that influence steady state wave characteristics. Theoretical and experimental analysis is conducted on 1D and 2D structures to realize different type of traveling waves. Owing to the robust characteristics of the piezo-ceramics (PZTs) in vibrational studies, we developed piezo-coupled structures to develop traveling waves through experiments.The results from this study provided the fundamental physics behind the generation of mechanical waves and their propagation through finite mediums. This research will consolidate the outcomes and develop a structural framework that will aid with the design of adaptable structural systems built for the purpose. The present work aims to generate and harness structural traveling waves for various applications.
- Design and Analysis of an Active Noise Canceling HeadrestBean, Jacob Jon (Virginia Tech, 2018-04-25)This dissertation is concerned with the active control of local sound fields, as applied to an active headrest system. Using loudspeakers and microphones, an active headrest is capable of attenuating ambient noise and providing a comfortable acoustic environment for an occupant. A finite element (FE) model of an active headrest is built and analyzed such that the expected noise reduction levels could be quantified for various geometries as well as primary sound field conditions. Both plane wave and diffuse primary sound fields are considered and it is shown that the performance deteriorates for diffuse sound fields. It is then demonstrated that virtual sensing can greatly improve the spatial extent of the quiet zones as well as the attenuation levels. A prototype of the active headrest was constructed, with characteristics similar to those of the FE model, and tested in both anechoic and reverberant sound fields. Multichannel feedforward and feedback control architectures are implemented in real-time and it is shown that adaptive feedback systems are capable of attenuating band-limited disturbances. The spatial attenuation pattern surrounding the head is also measured by shifting the head to various positions and measuring the attenuation at the ears. Two virtual sensing techniques are compared in both feedback and feedforward architectures. The virtual microphone arrangement, which assumes that the primary sound field is equivalent at the physical and virtual locations, results in the best performance when used in a feedback system attenuating broadband disturbances. The remote microphone technique, which accounts for the transfer response between the physical and virtual locations, offers the best performance for tonal primary sound fields. In broadband sound fields, a causal relationship rarely exists between the physical and virtual microphones, resulting in poor performance.
- Design Demonstration and Optimization of a Morphing Aircraft Control Surface Using Flexible Matrix Composite ActuatorsDoepke, Edward Brady (Virginia Tech, 2018-03-13)The morphing of aircraft wings for flight control started as a necessity for the Wright Brothers but quickly fell out of favor as aircraft increased speed. Currently morphing aircraft control is one of many ideas being explored as we seek to improve aircraft efficiency, reduce noise, and other alternative aircraft solutions. The conventional hinged control surface took over as the predominant method for control due to its simplicity and allowing stiffer wings to be built. With modern technologies in variable stiffness materials, actuators, and design methods, a morphing control surface, which considers deforming a significant portion of the wing's surface continuously, can be considered. While many have considered morphing designs on the scale of small and medium size UAVs, few look at it for full-size commercial transport aircraft. One promising technology in this field is the flexible matrix composite (FMC) actuator. This muscle-like actuator can be embedded with the deformable structure and unlike many other actuators continue to actuate with the morphing of the structure. This was demonstrated in the FMC active spoiler prototype, which was a full-scale benchtop prototype, demonstrated to perform under closed-loop control for both the required deflection and load cases. Based on this FMC active spoiler concept a morphing aileron design was examined. To do this an analysis coupling the structure, fluid, and FMC actuator models was created. This allows for optimization of the design with the objectives of minimizing the hydraulic energy required and mass of the system by varying the layout of the FMC aileron, the material properties used, and the actuator's design and placement with the morphing section. Based on a commercial transport aircraft a design case was developed to investigate the optimal design of a morphing aileron using the developed analysis tool. The optimization looked at minimizing the mass and energy requirements of the morphing aileron and was subject to a series of constraints developed from the design case and the physical limitations of the system. A Pareto front was developed for these two objectives and the resulting designs along the Pareto front explored. From this optimization, a series of design guidelines were developed.
- Design, Analysis, and Testing of Nanoparticle-Infused Thin Film Sensors for Low Skin Friction ApplicationsLeslie, Brian Robert (Virginia Tech, 2012-12-07)Accurate measurement of skin friction in complex flows is important for: documentation and monitoring of fluid system performance, input information for flow control, development of turbulence models and CFD validation. The goal of this study was to explore using new materials to directly measure skin friction in a more convenient way than available devices. Conventional direct measurement skin friction sensors currently in use are intrusive, requiring movable surface elements with gaps surrounding that surface, or require optical access for measurements. Conventional direct measurement sensors are also difficult to apply in low shear environments, in the 1-10 Pa range. A new thin, flexible, nanoparticle infused, piezoresistive material called Metal Rubber" was used to create sensors that can be applied to any surface. This was accomplished by using modern computerized finite element model multiphysics simulations of the material response to surface shear loads, in order to design a sensor configuration with a reduced footprint, minimal cross influence and increased sensitivity. These sensors were then built, calibrated in a fully-developed water channel flow and tested in both the NASA 20x28 inch Shear Flow Control Tunnel and a backwards facing step water flow. The results from these tests showed accurate responses, with no amplification to the sensor output, to shear levels in the range of 1-15 Pa. In addition, the computer model of these sensors was found to be useful for studying and developing refined sensor designs and for documenting sources of measurement uncertainty. These encouraging results demonstrate the potential of this material for skin friction sensor applications.
- Development and Application of Modern Optimal Controllers for a Membrane Structure Using Vector Second Order FormFerhat, Ipar (Virginia Tech, 2015-06-23)With increasing advancement in material science and computational power of current computers that allows us to analyze high dimensional systems, very light and large structures are being designed and built for aerospace applications. One example is a reflector of a space telescope that is made of membrane structures. These reflectors are light and foldable which makes the shipment easy and cheaper unlike traditional reflectors made of glass or other heavy materials. However, one of the disadvantages of membranes is that they are very sensitive to external changes, such as thermal load or maneuvering of the space telescope. These effects create vibrations that dramatically affect the performance of the reflector. To overcome vibrations in membranes, in this work, piezoelectric actuators are used to develop distributed controllers for membranes. These actuators generate bending effects to suppress the vibration. The actuators attached to a membrane are relatively thick which makes the system heterogeneous; thus, an analytical solution cannot be obtained to solve the partial differential equation of the system. Therefore, the Finite Element Model is applied to obtain an approximate solution for the membrane actuator system. Another difficulty that arises with very flexible large structures is the dimension of the discretized system. To obtain an accurate result, the system needs to be discretized using smaller segments which makes the dimension of the system very high. This issue will persist as long as the improving technology will allow increasingly complex and large systems to be designed and built. To deal with this difficulty, the analysis of the system and controller development to suppress the vibration are carried out using vector second order form as an alternative to vector first order form. In vector second order form, the number of equations that need to be solved are half of the number equations in vector first order form. Analyzing the system for control characteristics such as stability, controllability and observability is a key step that needs to be carried out before developing a controller. This analysis determines what kind of system is being modeled and the appropriate approach for controller development. Therefore, accuracy of the system analysis is very crucial. The results of the system analysis using vector second order form and vector first order form show the computational advantages of using vector second order form. Using similar concepts, LQR and LQG controllers, that are developed to suppress the vibration, are derived using vector second order form. To develop a controller using vector second order form, two different approaches are used. One is reducing the size of the Algebraic Riccati Equation to half by partitioning the solution matrix. The other approach is using the Hamiltonian method directly in vector second order form. Controllers are developed using both approaches and compared to each other. Some simple solutions for special cases are derived for vector second order form using the reduced Algebraic Riccati Equation. The advantages and drawbacks of both approaches are explained through examples. System analysis and controller applications are carried out for a square membrane system with four actuators. Two different systems with different actuator locations are analyzed. One system has the actuators at the corners of the membrane, the other has the actuators away from the corners. The structural and control effect of actuator locations are demonstrated with mode shapes and simulations. The results of the controller applications and the comparison of the vector first order form with the vector second order form demonstrate the efficacy of the controllers.
- Development of a Method for Analysis and Incorporation of Rotorcraft Fluctuation in Synthesized Flyover NoisePera, Nicholas Matthew (Virginia Tech, 2017-06-13)Rotorcraft flyover noise has long been a field of study for researchers. This is because for many people, the sounds produced by these vehicles are found to be extremely annoying. The focus of this thesis is to recreate the time-varying rotorcraft noise at the source for a single emission angle. Then, through interpolation between emission angles, produce a simulated flyover at the source that can then be propagated to a receiver. This will allow for the creation of a simulated flyover without the need of having to use a physical aircraft, or pre-existing data from some type of data collection means, such as a microphone array. The current methods are limited to a predefined length of data in order to synthesize signals. It has been documented that synthesizing flyover noise, from direct use of physical flyover recordings through an empirical approach, yields a high fidelity signal, as long as both unmodulated and modulated components are present. In order to extend these signals indefinitely, models for the amplitude and phase modulation must be developed. A band-limited random process will be explored for both the amplitude and phase modulations. An overlap-add technique, as well as a randomization technique and a modified phase modulation signal, defined as the "residual", will also be attempted in order to model the phase modulation. The results from this work have successfully found a means in which to produce a viable model of the amplitude modulation. Further investigation is still required in order to produce a model of the phase modulation which results in a high-fidelity model that can be extended indefinitely.
- Development of a Value System and Mission Architecture for the Exploration of the Oceans of EuropaAllen, David W. (Virginia Tech, 2014-10-30)Of all of the bodies in the solar system, Europa is perhaps the most enticing. Based on several lines of evidence, Europa, a moon of Jupiter, is believed to have an ocean of liquid water beneath several kilometers of ice. This ocean is likely in contact with Europa's rocky core, making Europa's ocean one of the most likely places for life to exist in the solar system outside of Earth. This thesis provides an outline of the technology required for a mission that travels to Europa, penetrates the ice, and explores the ocean below. In order to create this outline, this thesis first provides background on previous missions to the outer planets. A discussion of the science requirements is presented and then a value system by which designs are evaluated is developed. Current technologies and the design alternatives are presented and evaluated using the value system. A final mission architecture and concept of operations are then presented.
- Development of Active Artificial Hair Cell SensorsJoyce, Bryan Steven (Virginia Tech, 2015-06-04)The cochlea is known to exhibit a nonlinear, mechanical amplification which allows the ear to detect faint sounds, improves frequency discrimination, and broadens the range of sound pressure levels that can be detected. In this work, active artificial hair cells (AHC) are proposed and developed which mimic the nonlinear cochlear amplifier. Active AHCs can be used to transduce sound pressures, fluid flow, accelerations, or another form of dynamic input. These nonlinear sensors consist of piezoelectric cantilever beams which utilize various feedback control laws inspired by the living cochlea. A phenomenological control law is first examined which exhibits similar behavior as the living cochlea. Two sets of physiological models are also examined: one set based on outer hair cell somatic motility and the other set inspired by active hair bundle motility. Compared to passive AHCs, simulation and experimental results for active AHCs show an amplified response due to small stimuli, a sharpened resonance peak, and a compressive nonlinearity between response amplitude and input level. These bio-inspired devices could lead to new sensors with lower thresholds of sound or vibration detection, improved frequency sensitivities, and the ability to detect a wider range of input levels. These bio-inspired, active sensors lay the foundation for a new generation of sensors for acoustic, fluid flow, or vibration sensing.
- The Development of Actuators for the Whole Skin Locomotion RobotWilliams, Eric Andrew (Virginia Tech, 2014-03-24)The Whole Skin Locomotion robot propels itself using a motion similar to the cytoplasmic streaming exhibited by an amoeba. In the robot there are embedded ring actuators which evert the material of the robot to produce forward motion. The robot benefits from a highly flexible exterior allowing it to squeeze into constricted passageways or collapsed structures. The development of actuators for such a motion is performed by a shape memory alloy composite actuator. Unlike a typical composite model which utilizes a homogenization of fiber and matrix properties our model is developed for line loads produced in individual shape memory alloy wires onto the rod structure. The load vectors are determined in the deformed configuration of the actuator to account for the highly deformed actuator profiles that would be seen in operation. Also the load requirements for such actuators are developed in terms of the constriction forces and functional design limits are established. In addition, a helical spring backbone design is considered and stiffness properties for general helical springs are determined. The contact of spring coils is included in the analysis and a coupled constitutive model is developed for the spring when coils are in contact. The static design of helical springs for use in the actuators is performed and deformation and load restrictions are determined for subsequent design efforts.
- Dual Mode Macro Fiber Composite-Actuated Morphing Tip Feathers for Controlling Small Unmanned AircraftRubenking, Samuel Kim (Virginia Tech, 2017-07-25)The transition of flight from manned to unmanned systems has led to new research and applications of technology within the field that, until recently, were previously thought to be unfeasible. The industry has become interested in alternative control surfaces and uses for smart materials. A Macro Fiber Composite (MFC), a smart material, takes advantage of the piezoelectric effect and provides an attractive alternative actuator to servos in the Small Unmanned Aerial Systems (SUAS) regime of flight. This research looks to take MFC actuated control surfaces one step further by pulling inspiration from and avian flight. A dual mode control surface, created by applying two sets of two MFCs to patch of carbon fiber, can mimic the tip feathers of a bird. This actuator was modeled both using Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD). Real-world static testing on a feather confirmed preliminary FEA results, and wind tunnel tests simulating assumed cruise conditions confirmed the feather would not exhibit any adverse structural behaviors, such as flutter or aeroelastic divergence. From its modeled performance on a wing using CFD, the MFC feather proved to be a success. It was able to produce a wing that, when compared to a traditional rectangular wing, yielded 73% less induced drag and generated proverse yaw. However, the MFC feathers alone, in the configuration tested, did not produce enough roll authority to feasibly control an aircraft.
- «
- 1 (current)
- 2
- 3
- »