Browsing by Author "Phillips, Tyrone"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Extrapolation-based Discretization Error and Uncertainty Estimation in Computational Fluid DynamicsPhillips, Tyrone (Virginia Tech, 2012-02-27)The solution to partial differential equations generally requires approximations that result in numerical error in the final solution. Of the different types of numerical error in a solution, discretization error is the largest and most difficult error to estimate. In addition, the accuracy of the discretization error estimates relies on the solution (or multiple solutions used in the estimate) being in the asymptotic range. The asymptotic range is used to describe the convergence of a solution, where an asymptotic solution approaches the exact solution at a rate proportional to the change in mesh spacing to an exponent equal to the formal order of accuracy. A non-asymptotic solution can result in unpredictable convergence rates introducing uncertainty in discretization error estimates. To account for the additional uncertainty, various discretization uncertainty estimators have been developed. The goal of this work is to evaluation discretization error and discretization uncertainty estimators based on Richardson extrapolation for computational fluid dynamics problems. In order to evaluate the estimators, the exact solution should be known. A select set of solutions to the 2D Euler equations with known exact solutions are used to evaluate the estimators. Since exact solutions are only available for trivial cases, two applications are also used to evaluate the estimators which are solutions to the Navier-Stokes equations: a laminar flat plate and a turbulent flat plate using the k-Ï SST turbulence model. Since the exact solutions to the Navier-Stokes equations for these cases are unknown, numerical benchmarks are created which are solutions on significantly finer meshes than the solutions used to estimate the discretization error and uncertainty. Metrics are developed to evaluate the accuracy of the error and uncertainty estimates and to study the behavior of each estimator when the solutions are in, near, and far from the asymptotic range. Based on the results, general recommendations are made for the implementation of the error and uncertainty estimators. In addition, a new uncertainty estimator is proposed with the goal of combining the favorable attributes of the discretization error and uncertainty estimators evaluated. The new estimator is evaluated using numerical solutions which were not used for development and shows improved accuracy over the evaluated estimators.
- Residual-based Discretization Error Estimation for Computational Fluid DynamicsPhillips, Tyrone (Virginia Tech, 2014-10-30)The largest and most difficult numerical approximation error to estimate is discretization error. Residual-based discretization error estimation methods are a category of error estimators that use an estimate of the source of discretization error and information about the specific application to estimate the discretization error using only one grid level. The higher-order terms are truncated from the discretized equations and are the local source of discretization error. The accuracy of the resulting discretization error estimate depends solely on the accuracy of the estimated truncation error. Residual-based methods require only one grid level compared to the more commonly used Richardson extrapolation which requires at least two. Reducing the required number of grid levels reduces computational expense and, since only one grid level is required, can be applied to unstructured grids where multiple quality grid levels are difficult to produce. The two residual-based discretization error estimators of interest are defect correction and error transport equations. The focus of this work is the development, improvement, and evaluation of various truncation error estimation methods considering the accuracy of the truncation error estimate and the resulting discretization error estimates. The minimum requirements for accurate truncation error estimation is specified along with proper treatment for several boundary conditions. The methods are evaluated using various Euler and Navier-Stokes applications. The discretization error estimates are compared to Richardson extrapolation. The most accurate truncation error estimation method was found to be the k-exact method where the fine grid with a correction factor was considerably reliable. The single grid methods including the k-exact require that the continuous operator be modified at the boundary to be consistent with the implemented boundary conditions. Defect correction showed to be more accurate for areas of larger discretization error; however, the cost was substantial (although cheaper than the primal problem) compared to the cost of solving the ETEs which was essential free due to the linearization. Both methods showed significantly more accurate estimates compared to Richardson extrapolation especially for smooth problems. Reduced accuracy was apparent with the presence of stronger shocks and some possible modifications to adapt to singularies are proposed for future work.