Browsing by Author "Pickle, Stephanie M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Robust Parameter Design: A Semi-Parametric ApproachPickle, Stephanie M.; Robinson, Timothy J.; Birch, Jeffrey B.; Anderson-Cook, Christine M. (Virginia Tech, 2005)Parameter design or robust parameter design (RPD) is an engineering methodology intended as a cost-effective approach for improving the quality of products and processes. The goal of parameter design is to choose the levels of the control variables that optimize a defined quality characteristic. An essential component of robust parameter design involves the assumption of well estimated models for the process mean and variance. Traditionally, the modeling of the mean and variance has been done parametrically. It is often the case, particularly when modeling the variance, that nonparametric techniques are more appropriate due to the nature of the curvature in the underlying function. Most response surface experiments involve sparse data. In sparse data situations with unusual curvature in the underlying function, nonparametric techniques often result in estimates with problematic variation whereas their parametric counterparts may result in estimates with problematic bias. We propose the use of semi-parametric modeling within the robust design setting, combining parametric and nonparametric functions to improve the quality of both mean and variance model estimation. The proposed method will be illustrated with an example and simulations.
- Semiparametric Techniques for Response Surface MethodologyPickle, Stephanie M. (Virginia Tech, 2006-06-28)Many industrial statisticians employ the techniques of Response Surface Methodology (RSM) to study and optimize products and processes. A second-order Taylor series approximation is commonly utilized to model the data; however, parametric models are not always adequate. In these situations, any degree of model misspecification may result in serious bias of the estimated response. Nonparametric methods have been suggested as an alternative as they can capture structure in the data that a misspecified parametric model cannot. Yet nonparametric fits may be highly variable especially in small sample settings which are common in RSM. Therefore, semiparametric regression techniques are proposed for use in the RSM setting. These methods will be applied to an elementary RSM problem as well as the robust parameter design problem.